网上有关“1~5年级数学知识梳理”话题很是火热,小编也是针对1~5年级数学知识梳理寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。

有很多同学在上了初中高中之后对小学记忆过的数学知识点会慢慢变得模糊或者忘记,但其实小学数学知识点是学习数学的开端,也是基石,并且重在记忆和理解,知道它们含义,做题才会更加顺畅,大家可以收藏起来随时查阅 (文末附公式和进率) 。

质数与互质数:

这两个概念没有什么联系。两个质数,不能肯定就是互质数,例如 5 和 5。只有两个不相同的质数,才能肯定是互质数。另外,两个合数既可能是互质数,也可能不是互质数,但不能说两个合数一定不是互质数。

质因数: 把一个合数分解成几个质数相乘的形式,这样的质数叫做质因数。

分解质因数 :把一个合数分解成几个质数相乘的形式,就叫做分解质因数。

公倍数: 几个数公有的倍数。叫做公倍数。它的个数是无限的,只有最小的,没有最大的。

最大公因数: 几个数公有的因数中,最大的一个就叫做这几个数的最大公因数。

最小公倍数: 几个数公有的无限个倍数中,最小的一个就叫做这几个数的最小公倍数。

2 的倍数的特征:

个位上是 0、2、4、6、8 的数是 2 的倍数。是 2 的倍数的数叫做偶数,不是 2 的倍数的数叫做奇数。

5 的倍数的特征: 个位上是 0 或 5 的数是 5 的倍数。

3 的倍数的特征: 一个数的各个数字的和是 3 的倍数,这个数就是 3 的倍数。

同时是 2、3、5 的倍数的特征:个位上一定是 0。同时是 2、3、5 的倍数的最小两位数是 30,最小三位数是 120。

分数能否化成有限小数的判断方法: 一个最简分数分数的分母只有质因数“2 或 5”,这个分数就能化成有限小数。如果含有 2 和 5 以外的质因数,就不能化成有限小数。

分数的通分、约分(根据分数的基本性质):

通分: 把几个分母不同的分数,化成分母相同且大小不变的分数,叫做通分。

约分: 把一个分数化成同它相等的,分子、分母较小的分数,叫做约分。

百分数: 表示一个数是另一个数的百分之几的数,叫做百分数来源:https://www.mj-100.cn/xwzx/202412-8130.html。百分数又叫百分率或百分比。百分率不能超过100%。

公历年的平年、闰年:

平年 :把公历年份除以 4(这里不是整百的公历年份)有余数时,就把这一年叫做平年,有 365 天。其中二月份有 28 天。

闰年: 把公历年份除以 4(这里不是整百的公历年份)没有余数时.就把这一年叫做闰年。计 366 天。其中二月份有 29 天。如果年份是整百的,则除以 400,再看余数,判断方法同上。

比和比值:

比: 两个数相除,又叫做两个数的比。数 a 除以数 b(b≠0)可以叫做 a 与 b 的比,记作 a:b。也可以用分数形式表示 a/b。

比值: 比的前项除以后项所得的商,叫做比值。比和比值不同。如 5/7 既可看作是比,又可看作是比值。但是带分数则只能表示比值。比值不带单位名称。

比的基本性质: 在比的前项和后项同时乘上或除以相同的数(0 除外),比值不变。

化简比 :把一个比化为最简单的整数比,叫做比的化简。通常用比的基本性质化简比,也可以用求比值的方法化简比。一般情况下,化简以后的比,前后两项为互质数。

比例: 表示两个比相等的式子叫做比例。

比例的基本性质: 在比例中,两个外项的积等于两个内项的积叫做比例的基本性质。

来源:https://www.mj-100.cn/xwzx/202412-4689.html

比例尺: 图上距离和实际距离的比叫做这幅图的比例尺。比例尺是一个比。比例尺有数值比例尺和线段比例尺两种,它们可以互相转换。

正比例: 两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。用字母表示:y/x=k(一定)

反比例: 两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。用字母表示 y x=k(一定)

方程: 含有未知数的等式叫做方程。(注意:不是“含有未知数的式子叫方程”)

方程的解: 使方程左右两边相等的未知数的值叫做方程的解。

解方程: 求方程的解的过程叫做解方程。

条形统计图的特点: 要清楚地表示出各种数量的多少时用条形统计图。

折性统计图的特点: 不但要表示出各种数量的多少,还要能清楚地看出各种数量的增减变化情况时用折线统计图。

扇形统计图的特点: 要 清楚地表示出各部分数量占总数的百分之几时用扇形统计图。

平均数: 平均数代表这组数据的“一般水平”来源:https://www.mj-100.cn/xwzx/202412-8367.html。求平均数时,就用各数据的总和除以数据的个数,得数就是这组数据的平均数,多数情况下用平均数,但如果受到极大或极小数据影响就不能用了。

中位数: 中位数代表这组数据的“中等水平”。求中位数时,首先要先排序(从小到大或从大到小),然后根据数据的个数,当数据为奇数个时,最中间的一个数就是中位数;当数据为偶数个时,最中间两个数的平均数就是中位数。有极大、极小数据影响不能使用平均数时可以使用。

众数: 在一组数据中出现次数最多的数叫做这组数据的众数。众数代表“多数水平”。当众数的数据数量占总数量的大多数时可用。 直线:没有端点,可以向两端无限延长。

直线: 没有端点,可以向两端无限延长。

射线: 只有一个端点 可以向一端无限延长。直线和射线无法比较长短。

线段: 有两个端点。射线和线段都是直线的一部分。两点间,线段最短。

平行线: 在同一平面内不相交的两条直线叫做平行线。

垂线、垂足: 两条直线相交,有一个角是直角时,就说这两条直线互相垂直。其中一条直线叫做另一条直线的垂线,其交点叫垂足。从直线外一点到直线所画的线段中,垂线最短。

角: 锐角(大于 0°小于 90°的角)、直角(等于 90°的角)、钝角(大于 90°而小于 180°的角)、平角(等于 180°的角)、周角(等于 360°的角)。

长方体和正方体的特点: 长方体和正方体都有 6 个面,12 条棱,8 个顶点:它们的不同点是长方体至少有 4 个面是长方形,而正方体的 6 个面都是正方形。正方体可以看作特殊的长方体。

圆柱和圆锥的特点:

圆柱有 3 个面,上下两个平面叫做底面,另一个曲面叫做侧面。圆锥有两个面,它的西面是一个圆,它的侧面是一个扇形。等底等高的情况下,圆柱的体积是圆锥的3倍,圆锥的体积是圆柱的三分之一。

面积和占地面积: 面积是用来表示一个物体表面的大小;占地面积就是所占地面面积的大小(立体图形底面的面积)。

体积和容积(容量): ?体积从外面测量数据,容积从里面测量数据。

体积: 物体所占空间的大小,叫做物体的体积。

容积: 一个容器所能容纳物体的体积,叫做容积。

轴对称图形: 如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形叫做轴对称图形,这条直线叫做对称轴。画对称轴时,要画虚线,而且要两边出头(这因为对称轴是一条直线)。

表面积: 立体图形所有表面的面积叫做它的表面积。

公式:

1、 正方形: ?周长=边长×4 C=4a 面积=边长×边长 S=a2

2、 长方形: ?周长=(长+宽) ×2 C=2(a+b)

面积=长×宽 S=ab

3、 平行四边形: 面积=底×高 S=ah 高=面积÷底 底=面积÷高

4、 三角形 :

面积=底×高÷2 S=ah÷2

三角形高=面积×2÷底

三角形底:面积×2÷高

5、 梯形:

面积=(上底+下底)×高÷2 S=(a+b)×h÷2

求高:根据面积公式列出方程解答

6、 圆形:

周长=直径×圆周率 C=πd 或 周长=2×半径×圆周率 C=2πr

面积=圆周率×半径×半径 S=πr?

7、 正方体:

表面积=棱长×棱长×6 S表=6a?

体积=棱长×棱长×棱长 V=a3

8、 长方体:

表面积(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh)

体积=长×宽×高 V=abh

9、 圆柱体:

(1)侧面积=底面周长×高 S=2πrh

(2)表面积=侧面积+底面积 S=2πrh+2πr?

(3)体积=底面积×高 V=πr?h

10、圆锥体 :体积=底面积×高÷3 V=1/3Sh

求高:根据体积公式列出方程解答。

11、利息=本金×利率×时间 税后利息=本金×利率×时间×(1-5%)

应缴纳税款=营业额×税率 纯收入=营业额-应缴纳税款

进率:

长度:

1千米1000米 1米=l0分米? 1分米=10厘米

1厘米=10毫米 1米=100厘米

面积(地面面积):

1 平方千米=100 公顷 l 公顷=10000 平方米

1 平方米=100 平方分米 1 平方分米=100 平方厘米

体积(容积):

l 立方米=1000 立方分米

1 立方分米=1000 立方厘米

l 升=1000 毫升

1 立方分米=1 升 l 立方厘米=l 毫升

质量: 1 吨=1000 千克 1 千克=1000 克

时间: l 世纪=100 年 1 年=12 个月

大月(1、3、5、7、8、10、12)有 3l 天;小月(4、6、9、11)有 30 天;平年 2 月有 28 天,闰年 2 月有 29 天。

1 天=24 小时 1 小时=60 分 1 分=60 秒

关注 并分享 ,更多的学习干货与教育知识,尽在玩学世界!

新人教版1-6年级数学重点

篇一

第一单元

 准备课

 1、数一数

 数数:数数时,按一定的顺序数,从1开始,数到最后一个物体所对应的那个数,即最后数到几,就是这种物体的总个数。

 2、比多少

 同样多:当两种物体一一对应后,都没有剩余时,就说这两种物体的数量同样多。

 比多少:当两种物体一一对应后,其中一种物体有剩余,有剩余的那种物体多,没有剩余的那种物体少。

 比较两种物体的多或少时,可以用一一对应的方法。

 

篇二

第二单元

 位置

 1、认识上、下

 体会上、下的含义:从两个物体的位置理解:上是指在高处的物体,下是指在低处的物体。

 2、认识前、后

 体会前、后的含义:一般指面对的方向就是前,背对的方向就是后。

 同一物体,相对于不同的参照物,前后位置关系也会发生变化。

 从而得出:确定两个以上物体的前后位置关系时,要找准参照物,选择的参照物不同,相对的前后位置关系也会发生变化。

 3、认识左、右

 以自己的左手、右手所在的位置为标准,确定左边和右边。右手所在的一边为右边,左手所在的一边为左边。

 要点提示:在确定左右时,除特殊要求,一般以观察者的左右为准。

 

篇三

第三单元

 1-5的认识和加减法

 一、1--5的认识

 1、1—5各数的含义:每个数都可以表示不同物体的数量。有几个物体就用几来表示。

 2、1—5各数的数序

 从前往后数:1、2、3、4、5.

 从后往前数:5、4、3、2、1.

 3、1—5各数的写法:根据每个数字的形状,按数字在田字格中的位置,认真、工整地进行书写。

 二、比大小

 1、前面的数等于后面的数,用“=”表示,即3=3,读作3等于3。前面的数大于后面的数,用“>”表示,即3>2,读作3大于2。前面的数小于后面的数,用“<”表示,即3<4,读作3小于4。

 2、填“>”或“<”时,开口对大数,尖角对小数。

 三、第几

 1、确定物体的排列顺序时,先确定数数的方向,然后从1开始点数,数到几,它的顺序就是“第几”。第几指的是其中的某一个。

 2、区分“几个”和“第几”

 “几个”表示物体的多少,而“第几”只表示其中的一个物体。

 四、分与合

 数的组成:一个数(1除外)分成几和几,先把这个数分成1和几,依次分到几和1为止。例如:5的组成有1和4,2和3,3和2,4和1.

 把一个数分成几和几时,要有序地进行分解,防止重复或遗漏。

 五、加法

 1、加法的含义:把两部分合在一起,求一共有多少,用加法计算。

 2、加法的计算方法:计算5以内数的加法,可以采用点数、接着数、数的组成等方法。其中用数的组成计算是最常用的方法。

 六、减法

 1、减法的含义:从总数里去掉(减掉)一部分,求还剩多少用减法计算。

 2、减法的计算方法:计算减法时,可以用倒着数、数的分成、想加算减的方法来计算。

 七、0

 1、0的意义:0表示一个物体也没有,也表示起点。

 2、0的读法:0读作:零

 3、0的写法:写0时,要从上到下,从左到右,起笔处和收笔处要相连,并且要写圆滑,不能有棱角。

 4、0的加、减法:任何数与0相加都得这个数,任何数与0相减都得这个数,相同的两个数相减等于0.

 如:0+8=89-0=94-4=0

小学数学总复习各模块知识

数的认识 简易方程

一、数和数的运算 数的整除   二、代数初步知识

数的运算 比和比例

一般复合应用题 长度

典型应用题 面积

三、应用题 分数、百分数应用题 四、量的计量 体积

列方程解应用题 重量

比和比例应用题 时间

人民币

线 统计表

平面图形的认识与计算 角六、统计与概率

五、空间与图形 平面图形  统计图

长方体、正方体

立体图形的认识与计算

圆柱体、圆锥体

一、数和数的运算

(一)数的认识

整数的含义:像…-3,-1,0,1,2,3,…这样的数统称整数。

正数和负数的含义:像1,+5,6,…这样的数叫做正数;像-3,-2,-9,…这样的数叫做负数。

占位

0是最小的自然数,0是偶数,0的作用 表示起点

表示界线

自然数 1是最小的一位数,是自然数的基本单位;1既不是质数,也不是合数。

数的意义: 是整数的一部分,可表示基数也可以表示序数

意义:把单位“1”平均分成若干份,表示这样一份或几份的数叫做分数。表示其中一份的数就是分数单位

分数

真分数——分子比分母小(小于1)

分类: 假分数——分子大于或等于分母(大于或等于1)

带分数——分子比分母大(大于1)

意义:把整体“1平均”分成10份、100份、1000份……这样的一份或几份

是十分之几,百分之几,千分之几……可以用小数表示

有限小数

按小数部分分 无限不循环小数

小数 无限小数 纯循环小数

分类 纯小数 循环小数

按整数部分分 混循环小数

带小数

整数和小数数位顺序表

整数部分 小数部分

… 亿级 万级 个级

数位 … 千亿位 百亿位 十亿位

亿位 千万位 百万位 十万位

万位

千位

百位

十位

个位 十分位 百分位 千分位 万分位 …

计数单位 … 千亿 百亿 十亿

亿 千万 百万 十万

十分之一 百分之一 千分之一 万分之一 …

百分数:表示一个数是另一个数的百分之几的数叫做百分数。(百分率或百分比)

折扣*:商业用名词,几折就是十分之几,成数,几成就是百之几十。

注意:百分数、折扣只表示两个数的倍比关系,而分数除倍比关系外还可以表示具体数量。

数的读写:

1、整数的读法:从高位到低位,一级一级地读,每级末尾的0都不读,其他数位连续有几个0都只读一个0。

2、整数的写法:从高位到低位,一级一级地写,哪一个数位上一个单位也没有,就在那个数位上写0。

3、小数的读写:整数部分按整数来读(写),小数点读作“点”,小数部分依次读(写)出每一位上的数字。

数的改写

写成用“万”或“亿”作单位的数

1、多位数的改写和省略: 省略“万”或“亿”位后面的尾数

2、分数、小数、百分数的互化

改写成分母是10、100、1000…的分数再约分

小数 分数

用分子除以分母

小数点向右移动两位,同时添上%

小数 百分数

去掉%,小数点向左移动两位

写成分数形式并约分

百分数 分数

先写成小数,再写成百分数

数的大小比较:

1、整数的大小比较:先看位数,位数多的数大:位数相同,从高位看起相同数位上的数大的那个数就大

2、小数大小的比较:先比较两个数的整数部分,整数部分大的那个数就大;整数部分相同就看小数部分从高位看起,依数位比较

3、分数大小比较:分母相同分子大的分数大;分子相同分母小的分数大;分母不同,先通分再比较。

数的基本性质:

1、分数的基本性质:分数的分子和分母同时乘上或者除以相同的数(0除外),分数的大小不变。

2、小数的基本性质:小数的末尾添“0”或者去掉“0”,小数的大小不变。

(二)数的整除

定义:(小学阶段研究“数的整除”时所说的数一般指非0自然数)

数a除以b(b≠0)的商正好是整数而没有余数,我们就说a能被b整除(或者说b能整除a)。

倍数 公倍数 最小公倍数

整除 因数 公因数 最大公因数

质数 合数 互质数(已删除)

质因数 分解质因数(已删除)

2的倍数的特征:个位是0、2、4、6、8。

偶数 奇数(能被2整数的数叫偶数,不能被2整除的数叫奇数。)

3的倍数的特征:各位上的数的和是3的倍数

5的倍数的特征:个位上是0或者5的数。

(三)数的运算

1、四则运算的意义

数的

分类

运算名称 整数 小数 分数

加法 把两个数合并成一个数的运算。

减法 已知两个加数的和与其中一个加数,求另一个加数的运算。

乘法 求几个相同加数的和的简便运算。 小数乘整数与整数乘法意义相同。 分数乘整数与整数乘法意义相同。

一个数乘小数,就是求这个数的十分之几,百分之几…是多少。 一个数乘分数,就是求这个数的几分之几是多少。

除法 已知两个因数的积与其中一个因数,求另一个因数的运算。

2、四则运算的法则

整数 小数 分数

加减 相同数位对齐,从低位算起

加法:满十就向前一位进一

减法:不够减就从前一位退,退一当十 小数点对齐,从低位算起,按整数加减法进行计算,结果中的小数点和加减的数的小数点对齐。 1、同分母分数相加减,分母不变,分子相加减。

2、异分母分数相加减,先通分,然后再按同分母分数相加减的方法计算。

3、结果能约分的要约分来源:https://www.mj-100.cn/xwzx/202412-8484.html

乘法 1、从个位乘起,依次用第二个因数每一位上的数去乘第一个因数。

2、用第二个因数哪一位上的数去乘,得数的末位就和第二个因数的哪一位对齐。

3、再把几次乘得的数加起来。 1、按整数乘法法则算出积。

2、看因数中一共有几位小数,就从积的右边起数出几位点上小数点。 1、分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。

2、有整数的把整数看作分母是1的假分数。

3、有带分数的,通常先把带分数化成假分数。

除法 除数是整数:从被除数的高位除起,除数是几位就先看被除数的前几位,如果不够除,就要多看一位,除到哪一位就要把商写在哪一位的上面。商的小数点和被除数的小数点对齐。 除数是小数:先移动除数的小数点,使它变成整数,除数的小数点向右移动几位,被除数的小数点也向右移动相同的位数(位数不够的补0),然后按照除数是整数的除法进行计算。 甲数除以乙数(0除外),等于甲数乘以乙数的倒数。

3、四则运算各部分的关系:

加数+加数=和 被减数—减数=差

一个加数=和—另一个加数 减法 被减数=减数+差

减数=被减数—差

因数×因数=积 被除数÷除数=商

一个因数=积÷另一个因数除法 被除数=商×除数

除数=被除数÷商

4、运算定律和运算性质

加法交换律 : a+b=b+a

加法结合律 : (a+b)+c=a+(b+c)

乘法交换律 : a×b=b×a

乘法结合律 : (a×b)×c=a×(b×c)

乘法分配律 : (a+b)×c=a×c+b×c

减法的运算性质: a-b-c=a-(b+c) 来源:https://www.mj-100.cn/xwzx/202412-8380.html

除法的运算性质: a÷(b×c)=a÷b÷c

5、四则运算的顺序:

在一个没有括号的算式里,如果只含有同一级运算,要从左往右依次计算;如果含有两级运算,要先算第二级运算,再算第一级运算。

有括号的算式里,要先算括号里的,再算括号外的。

二、代数的初步知识

(一)简易方程

1、用字母表示数:

(1) 用字母可以表示我们学过的自然数、整数、小数、百分数……

(2) 用含有字母的式子,可以简明地表达数学概念、运算定律和数学计算公式。还可以简明地表达数量关系。

2、简易方程

(1) 等式:表示相等关系的式子。

(2) 方程:含有未知数的等式。

(3) 方程的解:使方程左右两边相等的未知数的值。来源:https://www.mj-100.cn/xwzx/202412-8264.html

(4) 解方程:求方程的解的过程。

(5) 解方程的依据:等式的基本性质(天平平衡的道理)

(二)比和比例:

1、 比和比例的意义与性质

比 比例

意义 两个数相除又叫做两个数的比 表示两个比相等的式子叫做比例

基本

性质 比的前项和后项同时乘上或者除以相同的数(0除外),比值不变。 在比例里,两个内项的积等于两个外项的积。

2、 比、分数与除法的关系

比 比号 前项 后项 比值

分数 分数线 分子 分母 分数值

除法 除号 被除数 除数 商

3、 求比值和化简比的区别与联系

一般方法 结果

求比值 根据比值的意义,用前项除以后项。 是一个商,可以是整数,小数或分数。

化简比 根据比的基本性质,把比的前项和后项同时乘上或同时除以相同的数(0除外)。 是一个比 ,它的前项和后项都是整数。

4、 比例尺

图上距离和实际距离的比,叫做这幅图的比例尺。

5、正比例和反比例的区别与联系

相同点 不同点

特征 关系式

正比例关系 两种相关联的量,一种量变化,另一种量也随着变化。 两种量中相对应的两个数的比值一定。

反比例关系 两种量中相对应的两个数的积一定。

ху=k (一定)

三、应用题

(一) 一般复合应用题

1、一般复合应用题的解法

(1)分析法:从问题入手,逐步分析题里的已知条件。

(2)综合法:从应用题的已知条件入手,逐步推出未知。

(3)分析综合法:将分析法、综合法结合起来交替使用的方法。当已知条件中有明显计算过程时就用综合法顺推,遇到困难时再转向原题所提的问题用分析法帮忙,逆推几步,顺推和逆推联系上了,问题便解决了。

2、一般复合应用题的解题步骤:

(1)审清题意,并找出已知条件和所求问题;

(2)分析题目里的数量间的关系,从而确定先算什么,再算什么,最后算什么;

(3)列式,算出结果;

(4)进行检验,写出答案。

(二)典型应用题(有一定解答规律的应用题)

1、求平均数问题

(1) 求平均数问题的特点:把各“部分量”合并为“总量”,然后按“总份数”平均,求其中一份是多少。

(2) 求平均数问题的解题规律:关键是先求出“总量”和“总份数”,然后用“总量÷总份数=平均数”,特殊情况可用“移多补少法”解答。

2、归一应用题

(1) 归一应用的特点:从已知条件中求出“单一量”,再以“单一量”为标准去计算所求的量。归一问题通常分为正归一和反归一。

(2) 归一问题的解题规律:首先求出一个单位数量,然后以这个“单位量”为标准,根据题目的要求,用乘法算出若干个“单位量”是多少,这是正归一的解题规律。或用除法算出总量包含多少个“单位量”,这是反归一的解题规律。归一问题还可以用倍比问题的解题方法求解。

3、相遇问题

(1)特点:A、两个运动物体;B、运动方向相向;C、运动时间同时。

(2)解题规律:速度和×相遇时间=路程

路程 ÷速度和=相遇时间

路程 ÷相遇时间=速度和

(三)分数、百分数应用题

1、分数乘法应用题

已知一个数,求它的几分之几(百分之几)是多少,用乘法。即:“一个数×几分之几(百分之几)”。

已知条件:表示单位“1”的量;单位“1”的几分之几(或百分之几)(又称:分率)

特征:

所求问题:求单位“1”的几分之几(百分之几)是多少(又称:部分量)

用等式表示三量的关系:单位“1”的量×分率=部分量

对应关系

2、分数除法应用题

(1)已知一个数的几分之几(百分之几)是多少,求这个数,用除法。即“多少÷几分之几”

已知条件:单位“1”的几分之几(分率);单位“1”的几分之几是多少

(部分量)

特征

所求问题:单位“1”的量

用等式表示三量的关系:部分量÷分率=单位“1”的量

对应关系

(2)求一个数是另一个数的几分之几(百分之几)用除法。即“一个数÷另一个数”。

已知条件:表示单位“1”的量;单位“1”的几分之几是多少(部分量)

特征

所求问题:求部分量是单位“1”的几分之几(百分之几)

用等式表示三量的关系:部分量÷单位“1”的量=分率

  对应关系

3、工程问题的应用题

把工作总量用“1”表示,工作效率用单位时间内做工作总量的“几分之一”表示。根据工作总量与工作效率,就能求出合作完成的工作时间。

三量之间的关系式:工作效率×工作时间=工作总量

工作总量÷工作效率=工作时间

工作总量÷工作时间= 工作效率

(四)列方程解应用题

1、列方程解应用题的思考方法:用字母代替应用题中的未知数,根据数量间的相等关系列方程,解方程。

2、列方程解应用题的一般步骤

(1)弄清题意,找出未知数并用X表示。

(2)找出数量间的相等关系,列出方程。

(3)解方程。

(4)检验并答。

(五)比和比例应用题

比和比例应用题包括:比例尺、按比例分配、和正反比例应用题。

1、比例尺中解题关系式:图上距离∶实际距离=比例尺

2、按比例分配应用题 :要分配的总量×各部分量的分率=各部分量。

3、正比例 у/χ=X/Y 反比例χу=XY(正、反比例应用题已删去)

四、量与计量

(一)量、计量和计量单位的意义

事物的多少、长短、大小、轻重、快慢等,这些可以测定的客观事物的特征叫做量。把一个要测定的量同一个作为标准的量相比较叫做计量。用来作为计量标准的量叫做计量单位。

(二)常用的计量单位及其进率

1、长度、面积、地积、体积、容积、重量单位及其进率

长度 1千米(km)=1000米(m) 1米(m) =10分米 (dm)

1分米(dm)=10厘米(cm) 1厘米(cm)=10毫米(mm)

面积 1平方千米=1000000平方米

1平方米=100平方分米

1平方分米=100平方厘米

1平方厘米=100平方毫米 地积 1平方千米=100公顷

1公顷=10000平方米

体积 1立方米=1000立方分米

1立方分米=1000立方厘米

1立方厘米=1000立方毫米 容积 1升=1000毫升

1立方分米=1升

1立方厘米=1毫升

重量 1吨=1000千克 1千克=1000克

2、常用时间单位及其关系

世纪 年 月 日 时 分 秒

100 12 24 60 60

每月31天的有1、3、5、7、8、10、12各月;每月30天的有4、6、9、11各月;平年全年365天,平年二月28天;闰年全年366天,闰年二月29天。

3、人民币:1元=10角1角=10分

(三)同类计量单位之间的转化

(化法)乘以进率

高级单位的数 低级单位的数

(化法)除以进率

五、空间与图形

(一)平面图形的认识和计算

1、线

线段:用直尺把两点连接起来就得到一条线段。来源:https://www.mj-100.cn/xwzx/202412-3519.html

线段的长就是这两点间的距离。(有两个端点)

直线:把线段的两端无限延 平行线:在同一平面内不相交的两条直线,叫做

长可以得到一条直线平行线。

 (没有端点)垂线:两条直线相交成直角,这两条直线叫做互

  相垂直,其中一条直线叫另一条直线的垂线。

射线:把线段的一端无限延长可以得到一条射线。(有一个端点)

2、角:从一点引出两条射线所组成的图形

锐角:小于90度的角

直角:等于90度的角

钝角:大于90度而小于180度的角

平角:180度的角

周角:360度的角来源:https://www.mj-100.cn/xwzx/202412-8263.html

3、平面图形

(1)三角形:由三条线段首尾相互连接围成的图形

锐角三角形:三个角都是锐角

按角分 直角三角形:有一个角是直角

钝角三角形:有一个角是钝角

三角形

等腰三角形:两条边相等

按边分 等边三角形:三条边相等来源:https://www.mj-100.cn/xwzx/202412-8202.html

不等边三角形:三条边都不相等

(2)四边形:由四条线段首尾依次连接围成的图形。 扇形

平行四边形 长方形 正方形(3)圆形 

四边形 环形

直角梯形

梯形

等腰梯形

(画线段、画角、画高、量线段、画垂线、画圆、画对称轴)

(4)特征及周长、面积计算公式:

名称 图形 字母意义 特 征 周长面积公式

正方形

a a:边长 四条边都相等,四个角都是直角 C=4a

S=a?

长方形 b

a a:长

b:宽 对边相等,四个角都是直角 C=2(a+b)

S=ab

平行四 边形 h

a a:底

h:高 两组对边分别平行且相等 S=ah

三角形 h

a a:底

h:高 有三条边,三个角,内角的和是180度 S=ah÷2

梯形 a

h

b a:上底

b:下底

h:高 只有一组对边平行 S=(a+b)h÷2

圆 d

r d:直径

r:半径 同圆内半径相等,直径相等,直径是半径的2倍 C=πd=2πr

S=πr?

(二)立体图形的认识和计算

1、长方体与正方体特征的区别与联系

特征

名称 相同点 不同点

面 棱 顶点 面的特点 棱长

长方体

6个 12条 8

个 6个面一般都是长方形(也可能有两个相对的面是正方形),相对的面的面积相等 每组(有3组,分别叫长、宽、高)互相平行的4条棱相等

正方体 来源:https://www.mj-100.cn/xwzx/202412-6873.html

6个 12条 8

个 6个面都是相等的正方形 12条棱都相等

2、圆柱、圆锥的特征

名称 图形 特征

上、下底面是面积相等的圆,两个底面之间的距离叫做高。侧面沿高展开是长方形(或正方形)。有无数条高来源:https://www.mj-100.cn/xwzx/202412-1307.html

底面是圆形,顶点到底面圆心的距离叫做高。只有一条高。

3、立体图形的表面积和体积的计算公式

名称 图形 字母意义 表面积s , 体积v

正方体

a:棱长 S=6a?  V=a?

长方体

a:长 b:宽

h:高 S=(ab+ah+bh)x 2V=abh

圆柱体

r:底面半径 h:高

c:底面周长 S侧=ch=πdh =2πrh

S表=S侧 +2S底面 V=sh=πr?h

圆锥体

r:底面半径

h:高 V=sh÷3

=πr?h÷3

六、统计与概率

单式统计表

统计表 复式统计表

百分数统计表

统计表包括:总标题、纵栏标题、横栏标题、数据资料栏、数量单位、制表日期

条形统计图(单式、复式)

统计图 折线统计图(单式、复式)来源:https://www.mj-100.cn/xwzx/202412-8336.html

扇形统计图

统计图的制法与特点

制法 特点

条形

统计图 1、 整理数据,画出横、纵轴,单位长度表示一定的数量2、根据数量多少画直条

3、写名称、制表日期、图例 很容易看出数量的多少来源:https://www.mj-100.cn/xwzx/202412-8462.html

折线

统计图 1、 整理数据,画出横、纵轴,单位长度表示一定的数量

2、 根据数量多少描点,再把各点用线段顺次连接起来。

3、 写名称、制表日期、图例 不但可表示数量的多少,而且能够表示数量的增减变化

扇形

统计图 1、计算各部分占总数的百分比,再算出与各部分所对应的扇形的圆心角的度数。2、取适当半径画圆,用量角器量出各扇形的圆心角,作扇形。3、注明各扇形表示内容和所占百分比,并用不同的标记加以区别,4、写上标题及制图日期。 清楚的表示出各部分与总数及部分与部分的关系

关于“1~5年级数学知识梳理”这个话题的介绍,今天小编就给大家分享完了,如果对你有所帮助请保持对本站的关注!