网上科普有关“微生物作业帮帮我”话题很是火热,小编也是针对微生物作业帮帮我寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。

微生物饲料 微生物饲料是以微生物、复合酶为生物饲料发酵剂菌种,将饲料原料转化为微生物菌体蛋白、生物活性小肽类氨基酸、微生物活性益生菌、复合酶制剂为一体生物发酵饲料。该产品不但可以弥补常规饲料中容易缺乏的氨基酸,而且能使其它粗饲料原料营养成份迅速转化,达到增强消化吸收利用效果。

一、发酵对象与分类

1、发酵全价饲料、浓缩料

取出全价饲料(使用浓缩料的按配好的全价饲料计算)按下面配比进行发酵。

2、发酵棉粕菜粕脱毒代替豆粕,另见说明书。

3、发酵生物豆粕代替鱼粉:可以适当加大菌种使用量,直接发酵豆粕转化成生物活性小肽后添加,另见说明书。

二、发酵方法(以发酵1000公斤发酵饲料为例)

1、 发酵饲料原料与配方:配制好的发酵饲料1000公斤,水350-400公斤(夏天350,冬天400),菌种饲料发酵剂5公斤,100-200克纳豆菌。2、 制作稀释活化发酵液:将菌种5公斤饲料发酵剂和100-200克纳豆菌倒入350-400公斤水中搅拌均匀制成活化发酵液。3、 将制成的活化发酵液与1000公斤发酵饲料混合均匀,湿度以手捏成团不滴水,一触即散为宜。有搅拌机的大型养殖场将活化发酵液慢慢加入饲料中搅拌均匀即可;没有搅拌机的养殖户将活化发酵液慢慢少量喷到饲料上,用铁锹搅拌均匀,注意:不能有团块、水结块,用手将团块、水结块搓散搅拌均匀。 4、大型养殖场可以将配置好的饲料在地面压实堆成垛或者装入水泥池压实,用塑料薄膜密封或者使用厚实的不透气的塑料碎团块、水结块。

三、使用功效:

1、本品占全价配合饲料的5-30%,一般情况下为10%合适,配制母猪饲料时,建议用量不超过20%。本品按比例配合均匀后饲喂,现配现喂,可干喂也可湿喂,自由饮水。

2、打开包装袋一角可与粉料或颗粒料等不同料型搭配饲喂。

3、本品可作为乳猪断奶前后的诱食饲料,饲喂后乳猪可平稳度过断奶期,防止出现应激反应和腹泻。

4、遇到仔猪黄白痢或生长缓慢的僵猪可适当将发酵饲料添加比例增加至20%添加,可有效防治仔猪黄白痢,促进僵猪快速生长。

5、母猪产后不食或泌乳不足或乳猪黄白痢,可将母猪饲料中发酵饲料添加比例增加至20%。

四、注意事项:

1、开袋后尽快用完,本品颜色稍有变化、有结块不影响使用性能;

2、初始饲喂时,因适口性好,而乳猪仔猪消化机能尚不健全,要防止乳猪仔猪采食过饱而引起消化不良,采用少喂多餐3-5天过渡即可;

3、5-9月份高温天气,现配现喂,1-2天用完;如混本品后存放时间较长,请将发酵饲料添加比例减少到5%,以防止水分超标发热

微生物农药 microbial pesticide

包括农用抗生素和活体微生物农药。为利用微生物或其代谢产物来防治危害农作物的病、虫、草、鼠害及促进作物生长。它包括以菌治虫、以菌治菌、以菌除草等。这类农药具有选择性强,对人、畜、农作物和自然环境安全,不伤害天敌,不易产生抗性等特点。这些微生物农药包括细菌、真菌、病毒或其代谢物,例如苏云金杆菌、白僵菌、核多角体病毒、井冈霉素、C型肉毒梭菌外毒素等。随着人们对环境保护越来越高的要求,微生物农药无疑是今后农药的发展方向之一。

参考:

一、 江苏省微生物农药研究开发的现状 1、微生物农药的开发现状 枯草芽孢杆菌(Bs)——微生物杀菌剂,能稳定地在土壤和植物表面定殖、产生抗生素、分泌刺激植物生长的激素、并能诱导寄主产生抗病性,是一种理想的微生物杀菌剂,有广阔的应用前景。如:美国Alabama州用Bs处理多种作物种子,平均产量增加9%,根病明显减轻;日本用Bs及其分泌物防治西红柿立枯病获得良好防效;国内北京大学和河南省农科院报告Bs对小麦赤霉病、西瓜枯萎病、烟草青枯病、棉花枯萎病等多种病害有良好的田间防治效果,并有明显的增产效应。江苏省农科院植保所与国际水稻研究所长期合作研究,研制开发出生物杀菌剂Bs-916,经大面积示范推广试验证明,Bs-916对纹枯病防效达75-85%,对稻曲病防效达63.8-85.7%。国内外专家这一研究成果高度评价,认为用Bs杀菌剂防治水稻纹枯病是目前生物防治叶部病害研究中最先进的,且已具备了转向商品化生产条件。 昆虫病毒〔核多角体病毒(NPV)、颗粒体病毒(GV)〕——微生物杀虫剂, 是抑制害虫种群的病原性天敌。NPV和GV以鳞翅目害虫为特异性寄主,安全性高、可长期保存、易于生产、并与化学杀虫剂具有相似的施用方法, 因而作为优良的生物防治因子, 得到世界各国的广泛重视与研究。近年来, 日本、美国、加拿大、英国等正着力研究NPV的提速、增效和扩大杀虫谱的途径和机制, 已取得突破性进展。特别是日本研究者福原和三桥和佐藤分别发现粘虫痘病毒(Pseudaletia separata EPV)对PuNPV和AcNPV具有极强的增效作用; 后藤则发现八字地老虎(Xestia c-nigrum)的颗粒体病毒(XcGV)不仅对XcNPV、HaNPV(棉铃虫NPV)、SeNPV(甜菜夜蛾NPV)等多种NPV具有100-10000倍的增效作用, 而且同时使NPV的杀虫速度提高一倍以上、并拓宽NPV的杀虫谱。GV对NPV提速、增效、扩谱作用的发现, 一举突破了NPV应用于农作物防治重大害虫的3大障碍, 使NPV首次展示了真正替代化学杀虫剂防治害虫的产业化开发前景。江苏省农科院植保所引进完整的NPV和GV增效株系及VEF增效基因重组表达体系,为我国开发该项最新技术奠定了坚实的基础,目前已开发出针对水稻螟虫(二化螟、三化螟)的NPV-GV增强型高效生物杀虫剂,对二化螟的杀虫效果均达90%以上。 苏云金芽孢杆菌(Bt)——微生物杀虫剂,在20多个省市用于防治粮、棉、果蔬、林业等作物上的20多种害虫,使用面积达5千万亩次。随着绿色食品的深入人心,Bt制剂在国内外农药市场上收到普遍欢迎。江苏里下河地区农科所自70年代专业从事苏云金杆菌(Bt)、球形芽孢杆菌(Bs)等微生物农药的研究与生产,是国内最早的生物农药研究机构之一。“九五”期间在研究筛选对夜蛾类等害虫广谱高杀虫活性Bt菌种的基础上,成功地运用Bt与国产氟铃脲(昆虫生长调节剂)两种生物农药增效复配的方式,既克服了Bt制剂的不足,也解决了氟铃脲单独应用成本较高和易产生药害等问题,对一些夜蛾类害虫,在初孵及1-3龄的龄期结构情况下,防效已达到80%左右,药效期7-10天,大大超过了Bt制剂单用的水平;近年来,深入开展了微生物高效毒株的筛选和生物增效因子的研究,筛选出高毒力Bt菌株Yz-2、和两株对Bt、SeNPV具有显著增效作用的病毒(PuGV-Ps和AsNPV);率先在省内开展Bt复配制剂的研究,筛选了Bt+阿维菌素等多个增效组合,示范推广效果显著。通过增进毒株毒力、病毒增效因子修饰、复配增效等多重有效手段克服制约微生物杀虫剂应用的瓶颈,提高 Bt、病毒制剂毒力、扩大杀虫谱、增强环境稳定性,为其大规模运用于生产实践,开辟了新的途径。 2、应用前景 微生物农药是21世纪农药工业的新产业,代表着植物保护的方向,其最大的优势在于能克服化学农药对生态环境的污染和减少在农副产品中农药残留量,同时在示范推广微生物农药应用的过程中,农副产品的品质和价格将大幅度上升,有利地促进农村经济增长和农民增收,社会效益不可估量。 我国已加入WTO,农业将面临新的发展机遇和空间,农副产品出口市场更加广阔,提高我国农产品的国际市场竞争力的重要因素之一是降低农产品有毒物质的残留量,而微生物农药将为农产品优质安全生产和降低有毒物质残留量提供技术和物质保障。微生物农药研究与发展,将有效地实现农产品的优质安全生产,提升农产品的经济附加值,扩大我国农副产品外销市场,推进绿色产业的发展,这些均对发展农村经济、增加农民收入、促进农村繁荣具有重要的推进作用。 微生物农药作为无公害农副产品生产的必要生产资料之一,在未来的农作物病虫害防治方面将有巨大的市场需求,因此,进一步加快微生物农药的研制、产业化和推广应用进程,降低农药在农副产品中的残留和对农田生态环境的污染,实现农作物重大病虫害可持续控制,满足我国无公害农产品产业化生产对农业科技的重大需求,必将产生巨大的社会、经济和生态效益。 3、存在的问题 l 微生物农药防效的评价问题 以微生物农药为主的生物防治是一种持久效应,因此对微生物农药的防治效果应该进行长期追踪调查,这样才能制定出使用微生物农药进行农作物病虫害管理的途径和策略。把微生物农药的防效与化学农药的防效进行比较,并套用化学防治的使用方法进行生物防治,这是一种错误的思路。微生物农药是通过生物间的相互作用来控制植物病虫害发生、为害的,微生物农药的效果不可能像化学农药那么快速、有效,但它们的防效是持久的、稳定的。因此,应该建立生物农药防治植物病虫害效果的评价体系,从生物农药对环境保护、可持续控制、农产品安全等诸方面的影响进行评估,有利于生物农药健康、迅速地发展。 l 微生物农药的中试和制剂问题 微生物农药进行实验室研究、小试的产品和品种很多,但真正最终实现产业化的却很少,究其原因,主要是未能解决产销用三个环节的实际问题。许多研究人员不大愿意做大范围的田间生物防治试验,因为这种试验费用大,各种干扰因素复杂,获得成果的可能性小。所以,国家政府在经费投入上应对微生物农药的研制及其产业化给予倾斜,鼓励研究人员加快微生物农药的产业化进程,同时对微生物农药产品的商品化应给予优惠条件。 微生物农药剂型单一、生产工艺落后,产品的理化指标和有效成分含量不稳定,致使成为微生物农药发展的一个瓶颈。因此,要开展产学研联合攻关,筛选能保持新剂型理化性状的助剂配方,筛选能提高新剂型分散性和附着性的表面活性剂,研制出提高生物农药防治效果的新助剂和新剂型。提高微生物农药的防治效果和有效利用率。 l 农民对微生物农药的认识问题 由于农民长期使用化学农药,首先考虑效果好坏,其次是成本与经济效益的关系,基本不考虑环境污染和农产品残留问题,对微生物农药的优点和可持续控制作用缺乏感性认识,加上微生物农药的毒性低、药效相对慢等弱点和宣传力度不足等原因,使农民对微生物农药的优越性认识不足。因此要加大宣传力度,使广大农民充分认识到生物农药的优越性,同时应加强农产品化学农药残留的检测,严格实行农产品优质优价,使农民真正获得使用生物农药的好处;要抓住当前各级政府大力发展无公害农产品、大面积建设无公害农产品生产基地的契机,促进微生物农药的迅速发展。

二、 今后研究的方向与发展预测 l 抑病、抑虫土壤 对于抑病、抑虫土壤应给予更多的研究。这种有微生物持性的土壤,使病原菌不能生存,害虫不能导致为害。虽然已有一些抑病、抑虫土壤的报导,但其抑制机制还不够了解,这是非常有用的生态信息。它们能导致新的生物防治因子的发现。 l 生物防除杂草 杂草的生物防治就是利用寄主范围较专一的植食性动物或植物病原微生物,将影响人类经济活力的杂草种群控制在经济为害阈值之下。生物治草与化学除草相比,具有不污染环境、不产生药害、经济效益高等优点。有时一次成功的天敌引种可一劳永逸地解决草害。对一些恶性杂草或在特殊环境(如水域)的草害、生物防治往往是最理想的防治措施。然而生物除草涉及的问题广泛复杂,难度较大,所以有必要加强这方面的研究工作。 l 基因工程微生物 近几年来,基因工程微生物的研究十分活跃,并先于抗病虫遗传工程植物进入了实用化阶段。这一发展显示出生物技术用于生防微生物遗传改良的巨大潜力,并为新一代微生物农药的进一步研究开发奠定了基础。美国Mycogen公司将Bt毒蛋白基因转入定殖在植物根部的萤光假单胞菌中,使杀虫作用可延长到两周以上,对小菜蛾的杀虫效果与化学农药相当,这种工程杀虫菌剂无污染环境的副作用,1991年登记注册,商品名为MVP,成为一种新型的微生物杀虫剂,用于蔬菜害虫防治。 l 转基因抗病虫植物 转基因抗病虫植物为病虫害防治开辟了新路。1985年美国科学家将烟草花叶病毒外壳蛋白基因(cp)导入感病的烟草,转基因植株增强了对病毒的抵抗力。这种通过转cp基因获得抗病性的方法后来在蕃茄、马铃薯、大豆、水稻等多种植株上获得了成功。可见这是一种很有前景的生物工程研究。 三、 对策与建议 1、抓住发展机遇,加强微生物农药研究 我国农业可持续发展要求确保食物安全,发展高产优质高效农业,维护资源的合理利用,建立良好的生态环境,以实现农业和农村的持续发展。要促进农业的可持续发展,推广应用微生物农药是重要的技术支撑之一。

此外,随着我国加入WTO,国内市场进一步开放,我国农产品将面临严峻的挑战。发展优质、无公害的农产品,提高参与国际市场的竞争力,微生物农药将起着极其重要的作用。因此,要抓住机遇,大力发展微生物农药。 2、强化基础研究,加大研究力度 发展微生物农药,政府必须加大科研经费的投入。首先应建立省级微生物农药研究基地或工程中心,组成一支微生物农药科研队伍,围绕当前生产上主要农作物重大病虫害开展生物防治的研究,系统筛选高效菌株,建立优化的发酵、增殖生产工艺和规范的生产质量标准,组建配套的田间实用技术;其次要加强微生物农药作用机理的研究,可根据其作用位点和活性中心反推导,指导菌种选育,更新剂型,合成新农药的先导化合物,创制新农药。 3、加速微生物农药产业化进程 微生物农药的研究在立项的同时就应考虑到项目的最终目标是形成微生物农药产品,将要进入市场,因此,应着重对微生物农药的制剂加工、产品质量、环境行为等一系列问题开展研究,提高微生物农药商品的质量和竞争能力;政府应制定向微生物农药产业化倾斜政策,一方面要加大扶持微生物农药产业化的支持力度,另一方面要鼓励企业单位直接参与项目研究,使企业成为微生物农药研究成果转化为生产力的基地,促进微生物农药的产业化。 4、微生物农药的开发与无公害农业生产基地建设相结合 微生物农药是无公害农产品生产必须的生产资料,因此应该将微生物农药的开发和无公害农业生产基地的建设紧密结合,在广泛建立无公害农产品生产基地的同时大力推广应用微生物农药。围绕我省农业结构调整、提高农业效益、增加农民收入、改善农村生态环境的主题,结合我省无公害农业对植物保护研究的新要求,大力发展微生物农药,使微生物农药及其配套使用技术在农作物主要病虫害防治中发挥更大的作用,为“十五”期间加速我省农业由主要追求数量向注重质量效益的根本转变、保障食物安全、保护环境、促进农业可持续发展,提供有力的科技支撑。 附:我国无残留农药研究达到国际先进水平 一种以昆虫病毒为主的专门防治茶叶害虫的纯“活体微生物农药”,日前被国家农业部正式批准实现批量生产,开始在全国有机茶基地推广使用,这标志着我国无残留农药应用这一高科技领域已达到国际先进水平。 这种最新研制的纯“活体微生物农药”被命名为“武大绿洲茶园”,是国家计委批准的“国家高技术产业化示范工程项目”中一项生物高新技术成果。它是按照联合国粮农组织(FAO)和世界卫生组织(WHO)共同创导使用的最有毒力和最安全的昆虫杆状病毒与其它微生物复合而成。 由武汉大学生命科学学院昆虫病毒研究所和湖北武大绿洲生物技术公司开发研制的“武大绿洲茶园”,是以茶尺蠖核型多角体病毒为主与其它微生物复合而成,是一种具有自主知识产权的纯生物杀虫剂。这也是目前国内外首例通过国家鉴定并可直接用于有机茶大面积防治茶尺蠖、茶毛虫、茶小卷叶蛾三大害虫的纯生物农药。

微生物能源

微生物对人类最重要的影响之一是导致传染病的流行。在人类疾病中有50%是由病毒引起。世界卫生组织公布资料显示:传染病的发病率和病死率在所有疾病中占据第一位。微生物导致人类疾病的历史,也就是人类与之不断斗争的历史。在疾病的预防和治疗方面,人类取得了长足的进展,但是新现和再现的微生物感染还是不断发生,像大量的病毒性疾病一直缺乏有效的治疗药物。一些疾病的致病机制并不清楚。大量的广谱抗生素的滥用造成了强大的选择压力,使许多菌株发生变异,导致耐药性的产生,人类健康受到新的威胁。一些分节段的病毒之间可以通过重组或重配发生变异,最典型的例子就是流行性感冒病毒。每次流感大流行流感病毒都与前次导致感染的株型发生了变异,这种快速的变异给疫苗的设计和治疗造成了很大的障碍。而耐药性结核杆菌的出现使原本已近控制住的结核感染又在世界范围内猖獗起来。

微生物千姿百态,有些是腐败性的,即引起食品气味和组织结构发生不良变化。当然有些微生物是有益的,它们可用来生产如奶酪,面包,泡菜,啤酒和葡萄酒。微生物非常小,必须通过显微镜放大约1000 倍才能看到。比如中等大小的细菌,1000个叠加在一起只有句号那么大。想像一下一滴牛奶,每毫升腐败的牛奶中约有5千万个细菌,或者讲每夸脱牛奶中细菌总数约为50亿。也就是一滴牛奶中可有含有50 亿个细菌。

微生物能够致病,能够造成食品、布匹、皮革等发霉腐烂,但微生物也有有益的一面。最早是弗莱明从青霉菌抑制其它细菌的生长中发现了青霉素,这对医药界来讲是一个划时代的发现。后来大量的抗生素从放线菌等的代谢产物中筛选出来。抗生素的使用在第二次世界大战中挽救了无数人的生命。一些微生物被广泛应用于工业发酵,生产乙醇、食品及各种酶制剂等;一部分微生物能够降解塑料、处理废水废气等等,并且可再生资源的潜力极大,称为环保微生物;还有一些能在极端环境中生存的微生物,例如:高温、低温、高盐、高碱以及高辐射等普通生命体不能生存的环境,依然存在着一部分微生物等等。看上去,我们发现的微生物已经很多,但实际上由于培养方式等技术手段的限制,人类现今发现的微生物还只占自然界中存在的微生物的很少一部分。

微生物间的相互作用机制也相当奥秘。例如健康人肠道中即有大量细菌存在,称正常菌群,其中包含的细菌种类高达上百种。在肠道环境中这些细菌相互依存,互惠共生。食物、有毒物质甚至药物的分解与吸收,菌群在这些过程中发挥的作用,以及细菌之间的相互作用机制还不明了。一旦菌群失调,就会引起腹泻。

随着医学研究进入分子水平,人们对基因、遗传物质等专业术语也日渐熟悉。人们认识到,是遗传信息决定了生物体具有的生命特征,包括外部形态以及从事的生命活动等等,而生物体的基因组正是这些遗传信息的携带者。因此阐明生物体基因组携带的遗传信息,将大大有助于揭示生命的起源和奥秘。在分子水平上研究微生物病原体的变异规律、毒力和致病性,对于传统微生物学来说是一场革命。

以人类基因组计划为代表的生物体基因组研究成为整个生命科学研究的前沿,而微生物基因组研究又是其中的重要分支。世界权威性杂志《科学》曾将微生物基因组研究评为世界重大科学进展之一。通过基因组研究揭示微生物的遗传机制,发现重要的功能基因并在此基础上发展疫苗,开发新型抗病毒、抗细菌、真菌药物,将对有效地控制新老传染病的流行,促进医疗健康事业的迅速发展和壮大!

从分子水平上对微生物进行基因组研究为探索微生物个体以及群体间作用的奥秘提供了新的线索和思路。为了充分开发微生物(特别是细菌)资源,1994年美国发起了微生物基因组研究计划(MGP)。通过研究完整的基因组信息开发和利用微生物重要的功能基因,不仅能够加深对微生物的致病机制、重要代谢和调控机制的认识,更能在此基础上发展一系列与我们的生活密切相关的基因工程产品,包括:接种用的疫苗、治疗用的新药、诊断试剂和应用于工农业生产的各种酶制剂等等。通过基因工程方法的改造,促进新型菌株的构建和传统菌株的改造,全面促进微生物工业时代的来临。

工业微生物涉及食品、制药、冶金、采矿、石油、皮革、轻化工等多种行业。通过微生物发酵途径生产抗生素、丁醇、维生素C以及一些风味食品的制备等;某些特殊微生物酶参与皮革脱毛、冶金、采油采矿等生产过程,甚至直接作为洗衣粉等的添加剂;另外还有一些微生物的代谢产物可以作为天然的微生物杀虫剂广泛应用于农业生产。通过对枯草芽孢杆菌的基因组研究,发现了一系列与抗生素及重要工业用酶的产生相关的基因。乳酸杆菌作为一种重要的微生态调节剂参与食品发酵过程,对其进行的基因组学研究将有利于找到关键的功能基因,然后对菌株加以改造,使其更适于工业化的生产过程。国内维生素C两步发酵法生产过程中的关键菌株氧化葡萄糖酸杆菌的基因组研究,将在基因组测序完成的前提下找到与维生素C生产相关的重要代谢功能基因,经基因工程改造,实现新的工程菌株的构建,简化生产步骤,降低生产成本,继而实现经济效益的大幅度提升。对工业微生物开展的基因组研究,不断发现新的特殊酶基因及重要代谢过程和代谢产物生成相关的功能基因,并将其应用于生产以及传统工业、工艺的改造,同时推动现代生物技术的迅速发展。

据资料统计,全球每年因病害导致的农作物减产可高达20%,其中植物的细菌性病害最为严重。除了培植在遗传上对病害有抗性的品种以及加强园艺管理外,似乎没有更好的病害防治策略。因此积极开展某些植物致病微生物的基因组研究,认清其致病机制并由此发展控制病害的新对策显得十分紧迫。

经济作物柑橘的致病菌是国际上第一个发表了全序列的植物致病微生物。还有一些在分类学、生理学和经济价值上非常重要的农业微生物,例如:胡萝卜欧文氏菌、植物致病性假单胞菌以及中国正在开展的黄单胞菌的研究等正在进行之中。日前植物固氮根瘤菌的全序列也刚刚测定完成。借鉴已经较为成熟的从人类病原微生物的基因组学信息筛选治疗性药物的方案,可以尝试性地应用到植物病原体上。特别像柑橘的致病菌这种需要昆虫媒介才能完成生活周期的种类,除了杀虫剂能阻断其生活周期以外,只能通过遗传学研究找到毒力相关因子,寻找抗性靶位以发展更有效的控制对策。固氮菌全部遗传信息的解析对于开发利用其固氮关键基因提高农作物的产量和质量也具有重要的意义。

在全面推进经济发展的同时,滥用资源、破坏环境的现象也日益严重。面对全球环境的一再恶化,提倡环保成为全世界人民的共同呼声。而生物除污在环境污染治理中潜力巨大,微生物参与治理则是生物除污的主流。微生物可降解塑料、甲苯等有机物;还能处理工业废水中的磷酸盐、含硫废气以及土壤的改良等。微生物能够分解纤维素等物质,并促进资源的再生利用。对这些微生物开展的基因组研究,在深入了解特殊代谢过程的遗传背景的前提下,有选择性的加以利用,例如找到不同污染物降解的关键基因,将其在某一菌株中组合,构建高效能的基因工程菌株,一菌多用,可同时降解不同的环境污染物质,极大发挥其改善环境、排除污染的潜力。美国基因组研究所结合生物芯片方法对微生物进行了特殊条件下的表达谱的研究,以期找到其降解有机物的关键基因,为开发及利用确定目标。

在极端环境下能够生长的微生物称为极端微生物,又称嗜极菌。嗜极菌对极端环境具有很强的适应性,极端微生物基因组的研究有助于从分子水平研究极限条件下微生物的适应性,加深对生命本质的认识。

有一种嗜极菌,它能够暴露于数千倍强度的辐射下仍能存活,而人类一个剂量强度就会死亡。该细菌的染色体在接受几百万拉德a射线后粉碎为数百个片段,但能在一天内将其恢复。研究其DNA修复机制对于发展在辐射污染区进行环境的生物治理非常有意义。开发利用嗜极菌的极限特性可以突破当前生物技术领域中的一些局限,建立新的技术手段,使环境、能源、农业、健康、轻化工等领域的生物技术能力发生革命。来自极端微生物的极端酶,可在极端环境下行使功能,将极大地拓展酶的应用空间,是建立高效率、低成本生物技术加工过程的基础,例如PCR技术中的TagDNA聚合酶、洗涤剂中的碱性酶等都具有代表意义。极端微生物的研究与应用将是取得现代生物技术优势的重要途径,其在新酶、新药开发及环境整治方面应用潜力极大。

1.微生物饲料

微生物饲料主要有单细胞蛋白和菌体蛋白饲料、发酵糖化饲料及秸秆微生物发酵饲料等。单细胞蛋白和菌体蛋白饲料是利用微生物生长繁殖快,蛋白含量高,利用有机废物来生产蛋白饲料。由我国于1984年3月20日发现的可利用薯类薯渣等粗淀粉的混生配伍菌株生产菌体蛋白饲料,简称4320菌体蛋白饲料,我国又相继选育出在柠檬渣、甜菜渣、豆渣、酒糟和玉米渣等工业废渣上生长良好的混生配伍菌株,用来生产4320系列菌体蛋白饲料。发酵饲料是利用各种有益微生物,把秸秆类粗饲料加工成营养丰富适口性好的饲料。微生物饲料添加剂也属微生物饲料类,主要有酶制剂、真菌添加剂、维生素类、抗生素类、氨基酸类、活微生物等。通过生物发酵工程制取的微生物及代谢物、转化物作伺料,正广泛应用于畜牧业生产中。

昆虫中有哪些是属于益虫?

这个资料难得找,我费了心 找了这个相关的,应该对你有所帮助~~

1945年以前,农民一般采用农业栽培方法如轮作、耕作和田园清洁来防治某些有害生物,只有几种化学产品如砷酸铅、烟碱和除虫菊等可以在作物上使用。1945年开发和生产的滴滴涕(很快又有了六六六、狄氏剂及其他有机氯农药)开始了化学防治有害生物的时代。最初,滴滴涕和其他的化学农药展现了它们的神奇效果。它们操作简便、作用快捷,并能杀死大多数有害生物。对这些新式化学武器的痴迷是狂热的,它们的使用很快遍及整个美国和世界其他地区。

然而,问题很快显现出来。第一次使用滴滴涕后不过两年,就发现家蝇和其他害虫的抗药性。此外,有机氯杀虫剂并不是对所有害虫都有效。一些害虫的天敌也被这些农药杀死,导致许多非害虫种类在数量上激增,而成为害虫。如在苹果园,由于它们的天敌被滴滴涕杀死,害螨的数量增加,结果苹果树因严重的螨害而产量下降。此外,杀虫剂副作用的影响延伸到农田以外和环境中。在自然界可以观察到被杀虫剂和其他农药大量杀死的鱼和鸟。当发现牛奶和其他食物被农药严重污染时,才受到人们高度的关注。美国于1972年禁用滴滴涕和相关的有机氯杀虫剂,其它农药仍在继续生产和使用,不过其中很多新型农药按每公顷常用剂量比早期的农药每公顷施用的剂量更少,毒力却高得多。它们的优点是不像滴滴涕和一些其他早期农药那样滞留在环境中。

2有害生物引起作物产量的损失

据估计,全世界有67000种不同的有害生物种类危害农作物,包括大约9000种昆虫和螨类,50000种植物病原体和8000种杂草。一般而言,其中主要的有害生物低于5%。在大多数情况下,一个特定地区的有害生物已经从以当地植物为食转变为以引种该地区的作物为食。

尽管全世界每年投资260亿美元,使用250万吨的农药,加上各种生物防治和其他非化学防治方法的使用,每年有害生物危害造成的损失仍为全世界的食用和纤维作物产量的35%和42%之间。据估计,全世界由害虫造成的损失达13%-16%,植物病原体造成的损失为12%-13%,杂草为10%-13%。据估计,每年作物损失的价值达到2440亿美元,然而在防治上每投资1美元仍可获得3-4美元的回报。在美国,每年有害生物造成的作物损失达到37%(虫害占13%,植物病原体占12%和杂草占12%)。尽管使用农药和各种非化学手段尽最大努力防治有害生物,但是每年被毁灭的食用和纤维作物总价值达到500亿美元。通常每年在农药防治上的投入约50亿美元,大约可挽回200亿美元的损失,即每投资1美元可获4美元的回报。非化学防治每年也可挽回作物损失估计达200亿美元。如果没有农药和非化学方法的防治,有害生物造成的危害将比现在更惨重。Oerke等(1994)估计,世界作物损失将上升到70%。像这样的增加,估计每年导致经济损失4000亿美元,将对世界的粮食供给造成明显的负面影响。美国的作物损失同样地将上升到63%,折算经济损失为900亿美元。

美国虽然在过去的50年里加大了农药的使用力度,但作物损失并不显示出同量的下降,主要原因在于农业耕作措施发生了各种变化。根据从1942年到现在收集的调查数据,杂草造成的损失有所波动,但只有轻微的下降,从13.8%降到12%。改进的杂草化学防除措施、机械杂草防除措施和栽培技术相结合的杂草防除措施是损失下降的原因。在同一时期,植物病原体包括线虫造成的损失有轻微的上升,从10.5%升到12%左右。这种情况的部分原因在于放弃了作物轮作,减少了田园清洁,以及政府、批发商和零售商对多种作物执行更加严格的外观标准。

尽管在过去的40年中使用的合成杀虫剂的数量和毒力两者均增加10倍以上,但是害虫造成的作物损失约为过去的2倍。这种作物损失的加重与发生在美国的农业耕作措施中的几个主要变化有关。这些变化包括:种植比过去采用的对害虫更敏感的某些作物品种;杀虫剂杀死了某些害虫的天敌,因而需要增加农药使用量;害虫种群农药抗药性的发展;作物轮作的减少导致害虫种群的进一步增加;单一作物栽培制度的增加和作物多样性的减少;美国食品和药物管理局(FDA)降低了食品中昆虫和昆虫类的容许限度,强制果树和蔬菜生产商和零售商执行更严格的 "外观标准";增加了航空施药技术的使用;减少了田园清洁,包括忽视清理受害虫侵害的水果和作物的残存物;减少了耕作,使更多的作物残体留在地表;作物种植于使其变得对害虫侵袭敏感的气候带;除草剂的使用改变了某些作物的生理,因而增加了它们易受害虫侵袭的弱点。除了在生长季节害虫造成的损失外,很多作物在被使用前的很长贮存期中,也出现巨大的损失。在收获后的一段时期内,有害生物造成全世界的食用作物损失估计平均达20%(范围从10%-50%)。在美国收获后有害生物造成的食用作物损失估计在10%以下。然而,尽管尽一切努力来防止有害生物对作物造成的损失,但造成全世界食用作物生产的损失仍为50%-60%。直至现在,采取种植高产品种,加上肥料使用、灌溉和其他的矿物能源投入的增加而提高的作物产量已弥补了这种损失。这种作物损失的补偿难以维持的担心和怀疑正在增长,因为肥沃的土壤正在受到侵蚀而消失、水分供应正在受到压力、含水层正在被开采以及矿物能源供应(特别在美国)正在被耗尽。

3环境和公众健康为农药的使用所付出的代价

在美国某些农药创造的效益弥补了使用农药引起的公众健康问题和环境污染所付出的代价。总之,人畜健康的危险加上其他的与美国农药使用相关的环境影响的经济代价,每年总数超过83亿美元。这种保守的估计并不包括农药危害微生物和野生动物的代价。然而,如果超过83亿美元加上每年价值50亿美元的农药使用费,在美国使用农药的总代价将上升到每年大约133亿美元。据估计,每年通过农药使用挽回的作物损失达200亿美元。因此在农药防治上每投资1美元,将得到大约1.5美元的作物价值。根据严格的成本/效益算法,使用农药创造的效益是肯定的。

与美国相比,发展中国家农药对公众健康和环境的负面影响更大,每年比较可信的代价大约1000亿美元。在这些地区,由农药引起的人类死亡和疾病的数量很高,这是由于无论在田间或是在贮存期间农药使用的法规不严,而且生产者、农场主或施药者经常不按法规操作。在美国和大多数发展中国家之间农药使用的有效法规存在的差别通过在食物中检测的农药残留可以说明。在美国大约35%出售给消费者的食物中含有农药残留,大约1.1%的食物中含有超过FDA规定允许值的农药残留。此外,在美国市场上出售的大约35%进口食物中含有可测农药残留,而1%-3%的进口食品中含有的农药残留超过了FDA规定的允许限量。由于残留检测是在食物已经出售之后进行的,这就意味着公众正在消费一些超过残留允许限量的食物。发展中国家食物中的农药残留比美国的高得多。例如在印度市场上出售的食物可测出的农药污染高达80%。印度另一个农药问题的严重标志是使用的杀虫剂中70%是滴滴涕和六六六有机氯农药,它们的使用每年以6%的速度增长。滴滴涕和六六六是累积在土壤、水源和生物群落中极稳定的农药,因此在美国早已被禁用。然而食物污染预期在印度的农业系统中随着这些有机氯农药使用的增长而更加严重。这些在其他的发展中国家存在类似的情形。

4 防治有害生物的新进展

随着时代发展,美国有害生物的防治发生了许多变化,公众越来越关心与农药相关的健康和环境问题。对防治有害生物方法的选择扩大到包括许多非化学防治的方法。有害生物防治的主要方法为农药、有害生物综合治理(IPM)、栽培技术和生物防治。最初IPM被设计成作为第一道防线的非化学防治方法,农药作为最后一道防线。IPM已发展成通过监测有害生物种群和天敌来确定是否和何时将使用农药,可谨慎地使用和减少使用农药。然而一些鼓吹使用农药的团体现在用"IPM"来证明他们在有害生物防治中继续大量使用农药是正确的。

近几十年经常被忽视的栽培技术在今天使用更加频繁,包括作物轮作、作物多样性、寄主作物的抗性、土壤、水和养分管理的操作技术、种植短季节作物、改变种植时间、种植诱虫植物、害虫性诱剂,以及这些方法之间的组合使用。有时在农业生态系统中一种相关的简单变化,如土壤的耕作方法或作物种植的时间,都可以提供一种对难治有害生物的防治方法。选择最适当的防治有害生物策略之前,必须了解农业生态系统和引起有害生物达到暴发水平的不同生态因子。而栽培技术和生物防治的实施者必须遵循当地的生态系统,包括土壤和气候。这种途径是用生态学知识取代农药,并开辟包括不同策略的可能性。虽然这些方法比喷雾更复杂,但长期的利益是明显的。生物防治包括使用捕食昆虫、寄生菌和微生物来防治有害生物种群,改善在农业生态系统中所有天敌的作用,引进控制有害生物的天敌,释放或施用天敌,包括抑制有害生物种群的微生物。

经典的生物防治依赖于利用从害虫原产地引进可控制它们的天敌。一些成功的生物防治例子总是联想到包括引进澳洲瓢虫防治加利福尼亚的澳洲吹绵蚧和近年引进寄生物防治非洲的木薯粉蚧。即使是成功的经典生物防治方法也一直有局限性。在这样的生物防治策略的实施中通常忽视的一个事实是任何一个给定的地理区域中,30%至80%的有害生物为该地区原有的,且它们从以非栽培植物为食转变为以引种到该地区的作物为食。例如,美国科罗拉多州马铃薯甲虫从取食一种杂草转变为取食引种进来的马铃薯。利用经典的生物防治方法防治大量的当地有害生物是困难的,事实上大约20种被采用的天敌通常只有1种取得成功,这便推动在生物防治中开发出一种"新关联"的方法。可以通过防治引进澳大利亚的欧洲兔来说明,因为在那里欧洲兔很快成为一种有害生物。将与欧洲的兔子相关的所有天敌引进到澳大利亚也难以防治那里的欧洲兔。最后,与南美兔有关的粘液瘤病毒被发现并引进澳大利亚,

但粘液瘤病毒对南美兔仅有很低的效果或无效。然而,南美粘液瘤病毒与欧洲兔的新关联非常好。该病毒在欧洲兔种群中一开始传播就杀死了90%以上兔子。当病毒发挥了对兔子的毒力达到在寄生物和它的新寄主之间处于自然平衡的程度时,逐渐存活下来的兔子发展了对该病毒的抗病性。兔子种群已经上升,但粘液瘤病毒还保持着大约40%的防治效果。这样的防治水平足以允许许多其他捕食动物有效地保持兔子种群在满意的控制之下。另一个"新关联"方法的成功运用是防治南美哥伦比亚当地的松毛虫。在维吉尼亚发现与松毛虫种群有关系的寄生蜂被引进哥伦比亚。松毛虫与寄生蜂之间的新关系提供了有效防治效果。一般来说,大约40%成功的生物防治是由于采用"新关联"方法。由于这种方法可成功地防治当地的和引进的有害生物,这种探索方法的利用在不断发展。几十年以来,在防治植物病原体上,寄主植物抗病性一直是占支配地位的非化学防治方法。作为育种的结果,75%至100%的所有栽培作物在某种程度上发展了寄主植物对植物病原体的抗病性。科学家还成功培育了植物对一些害虫的抗虫性,如抗小麦瘿蚊。现在利用基因工程的有效性,寄主植物的抗性在防治害虫和植物病原体中具有更大的潜力。

5与常规方法对应的合理生态农业

减少大量化学品包括农药和肥料投入的不同栽培技术的实施,有利于减少对土壤、水源和食物的化学污染。因此,减少了与人类疾病和死亡相关的化学品使用和农业生态系统的退化。通过精心的治理,土壤侵蚀及其水分流失得到控制,从而保护了土壤和水资源。此外,家畜粪便有效的管理和利用增强了土壤肥力和减少了环境污染。

常规玉米生产系统和包括几个合理的环境治理措施的改良系统两者之间的区别(见下表略)。常规系统依赖化学防治有害生物和化学肥料提供土壤养分。改良系统不用农药,耕作替代了除草剂,作物轮作用于害虫防治,有机肥料取代了大部分化学肥料。在常规系统中,每年的玉米产量为每公顷7000kg,成本为523美元,消耗的总能源达780万千卡以上。这个系统造成的土壤侵蚀每年大约20t/hm2,害虫造成的作物损失为12%,同时环境破坏造成的损失估计为230美元/ hm2。在改良系统中,不但玉米的产量比常规系统高 (总产8000kg/ hm2),而且成本较低(337美元/ hm2)。害虫造成的作物损失为3.5%,明显低于常规系统的12%。土壤侵蚀从常规系统的约20t/ hm2·年减少到改良系统的lt/ hm2年以下。1t/ hm2·年的侵蚀速率相当于土壤本身可以忍受的水平。此外,改良系统矿物能源的投入只有常规系统的一半,生产总成本每年减少36%,只有337美元。由于矿物能源资源持续缩减,而变得越来越昂贵时,减少能源投入将在农业生产中成为当务之急。

几个附加的合理治理措施也在改良系统中得到应用。有机肥料的小心使用减少了地面水和/或邻近水源的污染。有机肥料及其有价值的养分也得到了更有效的利用。有机肥料和土壤中有机物质的循环利用有助于减少土壤侵蚀。选择适宜的作物如选择大豆与玉米轮作可减少玉米短体线虫、玉米病害和许多典型的杂草问题。玉米和大豆轮作系统比两者单独种植更适合。这种轮作解决了玉米短体线虫问题,用杀虫剂防治该线虫代价昂贵。覆盖作物特别是豆类覆盖作物如苜蓿或越冬野豌豆,不但减少了杂草问题,而且更重要的是减少了土壤侵蚀、水分流失和保存了土壤养分。通过豆类覆盖作物被翻耕进土壤中使土壤获得和贮存养分。虽然覆盖作物和耕作替代了除草剂,但只证明除草剂在玉米系统中可以被替代。在某些情况下,除草剂和耕作结合使用更有利。

总而言之,在改良系统中获得的产量比常规玉米系统更高的同时,减少了农药和化学肥料的使用,保持了土壤和水资源。

6减少农药的使用

从世界几个地区的报道可以看出,当有害生物的防治研究聚焦于有害生物生态学的时候,就能开发相应的方法以减少农药的使用33%-75%而不降低作物产量。例如在危地马拉,一旦实施保护许多可以控制潜在害虫的天敌的策略,用于防治棉花害虫的杀虫剂用量可减少1/3以上,产量增加15%,一些大的棉花农场主的收益可以增收100万美元/年以上。在印度尼西亚,每年投资l00万美元的生态研究,因推广计划培训农民保护天敌而得到大量回报。依据在危地马拉使用的相似方法,印度尼西亚的水稻田农药使用量减少了65%,同时产量增加了12%。印度尼西亚政府可以少付给农民的农药补贴2000万美元。在美国纽约州实施IPM策略,甜玉米生产商在减少农药使用55%-65%的同时,每年节约50万美元且保持高产。在纽约州其他作物上的农药使用也已经减少。在美国减少农药使用估计每年至少节约5亿美元。除了美国、印度尼西亚和危地马拉外,瑞典、挪威、加拿大的安大略州、丹麦和荷兰等国家采用有效的策略减少农药使用达50%-75%。

结论

尽管在全世界农作物上使用250万吨农药和各种非化学防治方法,有害生物造成的所有潜在的食用和纤维作物的产量损失仍达40%以上,引起人们普遍的关注。在农业生产仅仅为了满足不断增长的人口的基本需求的时候,这种程度的损失仍将继续。事实上,在未来20年期间,这些供给不得不增加至少3倍,同时由于人口增长和土壤侵蚀,可耕种的土地面积将逐渐减少。此外,淡水的短缺越来越严重,矿物燃料供给逐渐下降。如果有害生物防治研究集中于整个农业生态系统,有害生物引起的作物损失将有实质上的减少。农药使用将继续下去,特别对于某些作物,但将只在必要的时候合理地使用。据估计,在不减少作物产量或实际上不降低新鲜水果和蔬菜"外观标准"的前提下,农药使用将减少50%之多。减少农药的使用将降低有害生物防治成本、保护公众健康和改善所有国家的环境。

1、草蛉。为捕食性昆虫,属于昆虫纲的脉翅目。在全世界已知有86属共1350种,据调查中国有记载的有15属约近百种,分布于中国南北各地。由于草蛉能够有效大量地捕食多种重要的农业害虫,因此人们广泛地开展了人工利用草蛉消灭害虫的工作。

2、寄生蜂是最常见的一类寄生性昆虫,属膜翅目,它们有2对薄而透明的翅膀,是膜翅目细腰亚目中金小蜂科、姬蜂科、小蜂科等靠寄生生活的多种昆虫。这种蜂寄生在鳞翅目、鞘翅目、膜翅目和双翅目等昆虫的幼虫、蛹和卵里,能够消灭被寄生的昆虫。

3、蜜蜂(Bee/Honey bee)在昆虫分类学上属于膜翅目、细腰亚目、针尾部、蜜蜂总科、蜜蜂科昆虫的统称,是膜翅目重要的类群。根据化石资料,蜜蜂在第三纪晚始新世地层中己大量发现,蜜蜂科的许多种类具有巨大的经济价值,与人类生活密切相关。

4、家桑蚕(Bombyx mori L.)是一种以桑叶为食料的鳞翅目泌丝昆虫,属无脊椎动物,节肢动物门 蚕蛾科 蚕蛾属桑蚕种?[1]?。栽桑养蚕的主要目的物是蚕茧和丝绸,蚕一生经过卵、幼虫、蛹、成虫 4 个形态上和生理机能上完全不同的发育阶段, 每一个发育阶段的不同部位及其代谢物都有广泛的药用价值。

5、猎蝽(lie chun)Vinchuca,半翅目(Hemiptera),异翅亚目(Heteroptera)猎蝽科(Reduviidae)昆虫的统称,绝大多数为捕食性,捕食其他昆虫、马陆等,是农林害虫的天敌。 有些种类吸食人体或其他动物的血液,部分种类是锥虫病的传播媒介。常见种类有黑红赤猎蝽Haematoloecha nigrorufa (Stal)、环斑猛猎蝽Sphedanoletes impressicollis (Stal)、黄足直头猎蝽Sirthenea flavipes Stal 等。

扩展资料:

草蛉适于在野外进行人工释放,在温室和暖棚内,同样有着明显的治虫效果。例如1977年,在北京四季青公社试验站,利用人工饲养的中华草蛉防治温室内为害黄瓜的瓜白粉虱,取得了良好防治效果。

草蛉能有效地消灭很多种类的农业害虫,是一类重要的天敌昆虫,开展对该物种的人工繁殖、饲养工作早被提到日程上来。有计划地把人工伺养的草蛉释放到田间,达到消灭害虫的目的,更是成果辉煌。

百度百科——草蛉

关于“微生物作业帮帮我”这个话题的介绍,今天小编就给大家分享完了,如果对你有所帮助请保持对本站的关注!


来源:http://ww.dongtai-machine.com/