网上有关“色彩是不是来源与光”话题很是火热,小编也是针对色彩是不是来源与光寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您来源:https://wzwebi.com/cshi/202501-1235.html。来源:https://yz66.net/cshi/202501-1618.html

1色彩产生的原理

①色散实验

色的来源(物理光学研究表明)――是光和人的正常视觉系统综合反应的结果.没有光就没有色彩,没有人的健康的视学系统,也就无法感觉到色彩(色盲者不要学美术).

黑暗中,我们什么色彩都看不到,什么色彩也分辨不清,其原因是因为缺少投照的光也就无法感觉到色彩――这也是色彩的物理学现象.

②光

光:是一种电磁波的幅射,无线电波、红外线、可见光、紫外线、X射线、γ射线都是电磁波,它们的产生方式不尽相同,波长也不同,把它们按波长(或频率)顺序排列就构成了电磁波谱.按波长区域不同,光谱可分为红外光谱,可见光谱和紫外光谱.人的视党只能感知电磁波中很少一部分,称之为可见光.

可见光

可见光:人眼能看见的光线在电磁波中占很少的一部分,最佳明视范围是在波长400nm――700nm之间.这段波长叫可见光谱,其余波长的电磁波都是人眼看不见的,通称为不可见光.

1.色彩的产生:光――眼――视神径――大脑作用的结果.光源色照射到物体时,变成反射光或透射光,后再进入眼睛,又通过视觉神径传达到大脑,从而产生了色的感觉.这便是色彩产生形成的过程.

③光源色 光源色:各种光源体发出的光,光波的长短,强弱比例性质的不同形成了不同的色光――叫光源色.

● 只含有某一种波长的色光――单色光

●含有两种以上波长的色光――复色光

●含有红、橙黄、绿、蓝、紫所有波长的色光――全色光(日光、太阳光)

宇宙间发光体千差万别,所形成的光源色也各不相同,但人们通常见的是日光、灯光:普通白织灯:光含**和橙色波长光多而呈**味.荧光灯:含蓝色波长光多呈蓝色味.太阳光是红、橙、黄、绿、兰、紫色光的混合所以呈白色.

当光源色照到物体上时,一部分光被吸收,其余的光被反射出来.反射光的规律是:“同性相拆、异性相吸”.

物体色与固有色 来源:https://wzwebi.com/cshi/202501-483.html

固有色:一般指物体在正常日光下所呈现的色彩特征,也可理解为物体本身具有的颜色.由于它最具有普通性在我们的视知觉中形成了对某一物体的色彩有一种形象的概念.例:红旗――大红.但这只是一种相对的色彩概念.从实际方面来讲,日光也是在不停的变化中,任何物体的色彩不仅受到投照光的影响,还会受到周围环境中种种反射光的影响,所以说,任何物体的色彩并不是固定不变的.固有色的概念只是人们对某一物体色彩印象中形成的概念而已.

物体色:是指投照光的改变而使物体表面的颜色发生了变化.从而产生新的色彩现象.从左图中,我们可以看出构成物体色的因素.

一、是物体本身固有的特征.二、是光源性质,即光源色彩.

物体色的呈现是与照射物体的光源色,物体的物理特性有关 .光线照射到物体上以后,会产生吸

收、反射、透射等现象.

色立体:是借助三维空间来表

示色相、纯度、明度的概念.将色彩的三要素色配置在一个三维空间的立体柱上,中心的轴柱表示明度,四周表示色相.纵向看,越是接近柱项,周围色相的明度越高(亮),越是接近柱底,周围色相的明度越低(暗).横向看,越是远离轴柱的色相,纯度越高,越是靠近轴柱的色相,纯度越低.这就是色立体.

色立体的用途

色立体相当于一本“配色字典”.每个人都有主观色调,在色彩使用上会局限于某个部分.色立体色谱为你提供了几乎全部色彩体系,它会帮助你丰富色彩词汇,开拓新的色彩思路.

由于各种色彩在色立体中是按一定秩序排列的,色相秩序、纯度秩序、明度秩序都组织得非常严密.它指示着色彩的分类、对比、调和的一些规律.

如果建立一个标准化的色立体谱,这对于色彩的使用和管理将带来很大的方便.只要知道某种色标号,就可在色谱中迅速而正确地找到它.

为什么所有色光和起来是白光

对于色彩的研究,千余年前的中外先驱者们就已有所关注,但自18世纪的科学家牛顿真正给予科学揭示后,色彩才成为一门独立的学科。色彩是一种涉及光、物与视觉的综合现象,“色彩的由来”自然成为第一命题。

所谓色彩术语,即色彩的专用名词。了解这些名词的含义,一方面是基本知识的组成部分,另一方面也是阐述色彩原理与规律的必要的中介语言,所以应在开始就作为讲解的内容。

经验证明,人类对色彩的认识与应用是通过发现差异,并寻找它们彼此的内在联系来实现的。因此,人类最基本的视觉经验得出了一个最朴素也是最重要的结论:没有光就没有色。白天使人们能看到五色的物体,但在漆黑无光的夜晚就什么也看不见了。倘若有灯光照明,则光照到哪里,便又可看到物像及其色彩了。

真正揭开光色之谜的是英国科学家牛顿。17世纪后半期,为改进刚发明不久的望远镜的清晰度,牛顿从光线通过玻璃镜的现象开始研究。1666年,牛顿进行了著名的色散实验。他将一房间关得漆黑,只在窗户上开一条窄缝,让太阳光射进来并通过一个三角形挂体的玻璃三棱镜。结果出现了意外的奇迹:在对面墙上出现了一条七色组成的光带,而不是一片白光,七色按红、橙、黄、绿、青、蓝、紫的顺序一色紧挨一色地排列着,极像雨过天晴时出现的彩虹。同时,七色光束如果再通过一个三棱镜还能还原成白光。这条七色光带就是太阳光谱。

牛顿之后大量的科学研究成果进一步告诉我们,色彩是以色光为主体的客观存在,对于人则是一种视象感觉,产生这种感觉基于三种因素:一是光;二是物体对光的反射;三是人的视觉器官——眼。即不同波长的可见光投射到物体上,有一部分波长的光被吸收,一部分波长的光被反射出来刺激人的眼睛,经过视神经传递到大脑,形成对物体的色彩信息,即人的色彩感觉。

光、眼、物三者之间的关系,构成了色彩研究和色彩学的基本内容,同时亦是色彩实践的理论基础与依据来源:https://yz66.net/cshi/202501-2575.html

光、可见光、光谱色

要了解牛顿发现的光色散现象的产生原因,还须从光的本质中寻找答案。

所谓光,就其物理属性而言是一种电磁波,其中的一部分可以为人的视觉器官——眼所接受,并作出反应,通常被称为可见光。因此,色彩应是可见光的作用所导致的视觉现象,可见光刺激眼睛后可引起视觉反应,使人感觉到色彩和知觉空间环境。可见光很普通,凡视觉正常的人都可感觉到它。可见光又神秘莫测和千变万化,因为除了看见之外,没有别的办法加以接触、稳定和认识。因此古今中外的许多科学家、艺术家、思想家都曾观察、研究和思考它,但几乎都没有找到令人信服的答案。尽管牛顿把光作了分解,然而有人把这说成是“破碎了的光”。

很显然,可见光不是固体、液体、气体之类的东西,不是细胞、分子、原子,也不是热能、电能、化学能。

随着科学的日益发展,对光的研究逐渐接触到本质。仍然是牛顿,在1678年首先提出,光是物体射出的一种微粒,称为光粒,它以极大的速度由发光体四向射出,达到人眼就产生光的感觉,被称为微粒说。

1678年海根斯等认为,宇宙间弥漫着一种稀薄而具有弹性的介质叫以太。物质发光,则其电子振动,经周围的以太依次传递到远方,成为一种横波,横波进入人眼引起光感,被称为波动说。

1864年麦克斯韦认为,光并不是以太自身的运动,而是以太之中的电磁变化而引起的传播,以太波即电波的一种,被称为电磁说。

现代科学证实,光是一种以电磁波形式存在的辐射能。它具有波动性,又具有粒子性。光具有的这两种性质,在光学上称为“二象性”。来源:https://wzwebi.com/cshi/202501-714.html

阳光通过三棱镜时随着波长的不同,行进的线路也不相同:紫色光波长最短,行进速度最慢,曲折最大(折射角度最大),红色光波长最长,折射角度最小,其余各色光依次排列,才形成七色光谱。光照射到不透明物体的表面时产生粒子“碰撞”,部分反射、部分被吸收,这种反射光作用于视觉器官,形成物体色的概念来源:https://wzwebi.com/cshi/202501-827.html。这些便是光的色散现象和物体色彩本质性科学解答。

在整个电磁波范围内,并不是所有的光都有色彩。电磁波包括宇宙射线、X射线、紫外线、红外线、无线电波和可见光等,它们都各有不同的波长和振动频率。只有从380毫微米到780毫微米波长之间的电磁波才能引起人的色觉,这段波长叫可见光谱,即常称的光。

其余波长的电磁波都是人眼所看不见的,通称不可见光,实际上是不同的射线或电波。波长长于780毫微米的电磁波称为红外线,短于380毫微米的电磁波叫紫外线。各种光具有不同的波长,其大小仍用毫微米来计量。来源:https://wzwebi.com/cshi/202501-992.html

由三棱镜分解出来的色光,如果用光度计来测定,就可得出各色光的波长。因此,色的概念实际上是不同波长的光刺激人的眼睛所产生的视觉反映来源:https://wzwebi.com/cshi/202501-1204.html

光的物理性质由光波的振幅和波长两个因素决定。波长的长度差别决定色相的差别。波长相同而振幅不同,则决定色相明暗的差别,即明度差别。

有光才会有色,光产生于光源。光源有自然的和人造的两类。和所有的灯光都是由各种波长与频率的色光组成的,这些色光依次排列,即所谓“光谱”。不同光谱的灯如白炽灯、荧光灯等所发出的光,其色彩感觉也不同。来源:https://www.yz66.net/xwzx/202501-3734.html

太阳光的光谱开始被认为是由红、橙、黄、绿、青、蓝、紫七色组成,后来有人提出由红、橙、黄、绿、蓝、紫六色组成,理由是青和蓝色光始终未能测定其确切的波长界限差值。关于7色和6色光谱的观点,在色彩学中似乎至今未有定论,原因主要是以六色排出的色表与色环便于色彩原理的阐述)。因为光谱色的名称不仅为科学家和艺术家们所关心,语言学家和文学家也极为关注,出自他们各自的着眼点,对名称含义的理解存在差异亦在所难免。例如橙色以色彩学论实为红黄的间色,也有叫桔**的,现实中橙色的果实其色彩有很大的差别,就是橙子本身的色彩也有深浅差别,所以橙色只是所有橙子色彩的一个总概念,很难以某一个具体的果子为标准。由此可见,色彩的名称本身实际上就存在着不确切性。又如青色,有人认为来源于蓝晶石,因此应该蓝绿色,而蓝才是正色,所以光谱色中应该去青存蓝来源:https://wzwebi.com/cshi/202501-492.html。在日本,青天的青实际上是我们认为的天蓝,所以在日本的光谱中习惯于去蓝存青。此外,还有认为光谱只有红、黄、绿、蓝、紫五色组成的观点。总之,有关7色、6色、5色的观点可以说至今尚未定论,很难确认某种说法而否定另两种说法,在阅读不同的色彩理论书时,经常会出现说法不一的现象,原因已如上所述。

用颜料配出和色光标准色相一致的六种色,定为颜料的标准色,即为红、橙、黄、绿、蓝、紫。来源:https://faithandyoung.com/cshi/202501-5569.html

光源色、物体色、固有色

物体色的呈现是与照射物体的光源色、物体的物理特性有关的。

同一物体在不同的光源下将呈现不同的色彩:在白光照射下的白纸呈白色,在红光照射下的白纸成红色,在绿光照射下的白纸呈绿色。因此,光源色光谱成分的变化,必然对物体色产生影响。电灯光下的物体带黄,日光灯下的物体偏青,电焊光下的物体偏浅青紫,晨曦与夕阳下的景物呈桔红、桔**,白昼阳光下的景物带浅**,月光下的景物偏青绿色等。光源色的光亮强度也会对照射物体产生影响,强光下的物体色会变淡,弱光下的物本色会变得模糊晦暗,只有在中等光线强度下的物体色最清晰可见。

物理学家发现光线照射到物体上以后,会产生吸收、反射、透射等现象。而且,各种物体都具有选择性地吸收、反射、透射色光的特性。以物体对光的作用而言,大体可分为不透光和透光两类,通常称为不透明体和透明体。对于不透明物体,它们的颜色取决于对波长不同的各种色光的反射和吸收情况。如果一个物体几乎能反射阳光中的所有色光,那么该物体就是白色的。反之,如果一个物体几乎能吸收阳光中的所有色光,那么该物体就呈黑色。如果一个物体只反射波长为700毫微米左右的光,而吸收其它各种波长的光,那么这个物体看上去则是红色的。可见,不透明物体的颜色是由它所反射的色光决定的,实质上是指物体反射某些色光并吸收某些色光的特性。透明物体的颜色是由它所透过的色光决定的。红色的玻璃所以呈红色,是因为它只透过红光,吸收其它色光的缘故。照相机镜头上用的滤色镜,不是指将镜头所呈颜色的光滤去,实际上是让这种颜色的光通过,而把其它颜色的光滤去。由于每一种物体对各种波长的光都具有选择性的吸收与反射、透射的特殊功能,所以它们在相同条件下(如:光源、距离、环境等因素),就具有相对不变的色彩差别。人们习惯把白色阳光下物体呈现的色彩效果,称之为物体的“固有色”。如白光下的红花绿叶绝不会在红光下仍然呈现红花绿叶,红花可显得更红些,而绿光并不具备反射红光的特性,相反它吸收红光,因此绿叶在红光下就呈现黑色了。此时,感觉为黑色叶子的黑色仍可认为是绿叶在红光下的物体色,而绿叶之所以为绿叶,是因为常态光源(阳光)下呈绿色,绿色就约定俗成地被认为是绿叶的固有色。严格地说,所谓的固有色应是指“物体固有的物理属性”在常态光源下产生的色彩。

光的作用与物体的特征,是构成物体色的两个不可缺少的条件,它们互相依存又互相制约。只强调物体的特征而否定光源色的作用,物体色就变成无水之源;只强调光源色的作用不承认物体的固有特性,也就否定了物体色的存在。同时,在使用“固有色”一词时,需要特别提醒的是切勿误解为某物体的颜色是固定不变的,这种偏见就是在研究光色关系和作色彩写生必克服的“固有色观念”。来源:https://wzwebi.com/cshi/202501-346.html

自然界的物体尽管千姿百态,错综复杂,但由于它们都具有一定的形体和色彩,使我们能够准确地辨别它们。我们之所以能看到并能辨识物象的千差万别的形体和色彩,是由于受光线照射后,使光产生分解,一部分光线被物体吸收,另一部分光线折射出来,成为我们肉眼感觉到的物体色彩。如果在黑夜里,形体难辨,色彩也就无从谈起了。也就是说,借助于光,我们才能看到物体各种不同的色彩。色彩是光的产物,没有光就没有色彩。

英国物理学家牛顿(1642~1727),把太阳光透过小孔引进暗室射到三棱镜上,用三棱镜把太阳光分解成红、橙、黄、绿、青、蓝、紫七种色光,同雨后天空中的彩虹一样。这个事实表明,太阳光是通过这些色光的混合得来的,即七色光混合在一起,便成为白光。在七色光谱中,红光的波长最长,依次递减,紫光的波长最短。之所以中午阳光为白光,早晚阳光为红黄,是因为中午阳光中所有色光都能直射到地球表面上,而早晚阳光斜射,再加上大气层中尘埃所致,波长短的不能射到地球表面上,人们的眼睛也就无法看到这部分光波。

从光学原理上讲,我们的眼睛能看清自然界万物的色彩,不是物体本身的固有色,而是光源或物体反射光反映到我们视网膜的结果。不同的物体反射和吸收光波的波长不同,所呈现出的色彩就各异。所以光与色是不可分离的,色彩来源于光的作用。

二、视觉与色彩

自然界的物象与我们无论距离远近,总隔着一层空气。空气是透明体,但它的纯度通常是很差的,有许多水汽和尘埃常夹杂在其中,当色光透过这层空气时,不可避免地会遇到一定的阻碍,使各色光发生不同程度的散射,造成色彩在空间传递中的变化。一般来说,景物越近,与我们之间相隔的空气越稀薄,物体的质感、体积感、冷暖感等越明确;景物越远,则与我们之间相隔的空气越浓厚,色彩感、质感、体积感、冷暖关系等越模糊。我们在室外风景写生时,应了解大自然的客观规律,细心观察色光的微妙变化,将远景处理得虚一点,色彩淡一点,明暗、冷暖对比弱一些,才能使画面体现出深度空间,把景物的近、中、远空间层次拉开,从而更准确地描绘出自然界的真实景象。来源:https://wzwebi.com/cshi/202501-996.html

各色光穿透大气层的能力强弱,基本上是按其波长的长短顺序排列的,红色最强,橙、黄、绿、青依次居其间,紫色最弱。因此,波长越长的色光对大气层的穿透能力越强。视觉感受越明显。波长越短的色光对大气层的穿透能力越弱,视觉感受也越不明显。

关于“色彩是不是来源与光”这个话题的介绍,今天小编就给大家分享完了,如果对你有所帮助请保持对本站的关注!