网上有关“物质的本质:化学元素周期表解析”话题很是火热,小编也是针对物质的本质:化学元素周期表解析寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。来源:https://wzwebi.com/cshi/202501-935.html

元素周期表的发现史

1.周期律发现前的元素分类?

1789年拉瓦锡在他的著作中首次出现了《元素表》。1815年英人威廉·普劳特提出:1、所有元素的原子量均为氢原子量的整数倍;2、氢是原始物质或“?第一物质”?,?他试图把所有元素都与氢联系起来作为结构单元。1829年德伯赖纳提出五组《三素组》:Li、Na、K;Ca、Sr、Ba;P、As、Sb;S、Se、Te;Cl、Br、I。?1843年盖墨林把当时己知的化学元素按性质相似分类制成了元素表。十八世纪?六十年代法人尚古多制出了元素分类的螺旋线图或地螺柱图。他最先提出元素性质和原子量之间有关系,?并初步提出了元素性质的周期性。螺旋图是向揭示周期律迈出了有力的第一步,?但缺乏精确性。1864年英人欧德林用46种元素排出了《元素表》。同年德人迈尔依原子量大小排出《六元素》表。该表对元素进行了分族,?有了周期的雏型来源:https://www.yz66.net/cshi/202501-33204.html。1865年英人纽兰兹把62种元素依原子量递增顺序排表,?发现每第八个元素性质与第一个元素性质相近,?好似音乐中的八度音,?他称为“?八音律”?。八音律揭示了元素化学性质的重要特征,?但未能揭示出事物内在的规律性。

2?.周期律的发现来源:https://wzwebi.com/cshi/202501-358.html?

化学家绝不满意元素漫无秩序的状态。从《三素组》到《八音律》,?逐步对元素知识进行归纳和总结,?试图从中找出视律性的东西,?为发现周期律开辟了道路。由于科学资料积累,?元素数目增多,?终于在十九世纪后半期迈尔和门捷列夫同时发现了元素周期律。1867年俄人门捷列夫对当时已发现的63种元素进行归纳、比较,?结果发现:元素及其化合物的性质是原子量的周期函数的关系,?这就是元素周期律。依据周期律排出了周期表,?根据周期表,?他修改了铍、铯原子量,?预言了三种新元素,?后来陆续被发现,?从而验证了门氏周期律的正确性,?迅速被化学家所接受。在周期律的指导下,?先后发现了稼、钪、锗、钋、镭、锕、镤、铼、锝、钫、砹等十一种元素同时还预言了稀有气体的存在,?并于1898年以后,?陆续发现了氖、氢、氙等元素,?因而在周期表中增加ⅧA族。到1944年自然界存在的92种元素全部被发现。?

如果说,?原子一一分子论的建立是对化学的一次总结,?那么周期律的发现,?使元素成了一个严整的自然体系,?化学变成一门系统的科学,?它是化学史上的一个重要里程碑它讨原子结构、有机化学、原子能、地球化学、生物化学、冶金、新元素的发现与合成都有深远的影响。为了纪念门氏的伟大发现,?科学家把101号元素命名为钔。恩格斯曾给以高度评价:“?门捷列夫不自觉地应用黑格尔的量转化为质的规律,?完成了科学上的一个勋业。”

由于时代的局限性,?门氏不可能认识到周期律更本质的规律来源:https://wzwebi.com/cshi/202501-349.html。因此可以说门氏只是原子体系的哥白尼,?而原子体系的伽利略和牛顿,?自有后来人。

元素周期表的发展史

十九世纪末,?二十世纪初,?由于原子量的精确测定,?确知碲的原子量大碘,?氩大于钾,?钴大于镍等。基于这个事实,?并照顾到元素性质的相似性,1902年捷克化学家布拉乌勒尔设计的周期表中有几处颠倒了原子量的排列。1905年瑞士化学家维尔纳设计的专表也有这种现象,?这是对门氏周期律的直接挑战。面对矛盾,?当时科学家无法解释。随着阴极射线、电子、射线、放射性等的发现,1899--1900年英人卢瑟福提出原子有核模型,?揭示了原子的复杂结构。1913年荷兰人范德布洛克指出元素在周期表中排列序数等于该元素原子具有的电子数。这一假说开始把元素在周期表中排列序数和原子结构联系起来。这个假定动摇了门氏和他的同辈以及先辈们的周期律的固有概念。?

1913--1914年间,来源:https://wzwebi.com/cshi/202501-416.html?英国青年物理学家莫斯莱对X射线技术进行了研究,从而验证了范德布洛克的假说,来源:https://wzwebi.com/cshi/202501-651.html?揭示了元素周期律的本质:元素的化学性质是它们原子序数的周期性函数。原来在诸原子中有决定意义的东西不是原子量,?而是原子的核电荷以及核外电子数。1916年德国化学家柯塞尔就立即把原子序数放进周期表中,?代替了门氏的原子量。1920年英人查德维克证实了摩斯莱的工作。这样,?一系列物理学中的新发现,?使元素周期律获得了新定义:元素的物理性质和化学性质,?以及由元素形成的各种化合物的性质,?皆与元素原子核电荷的数量成周期性关系。

2?.周期律理论的深化与探索?

按照核电荷递增顺序排列各元素,?使前面出现的矛盾迎刃而解。随着现代原子结构理论的建立,?周期律理论得到发展。1913年玛丽·?居里提出原子核结构设想。1913年卢瑟福和查德维克发现质子。1932年查德维克发现中子。质子和中子发现后,?苏联科学家伊万年柯,?德国物理学家海森堡等人立即提出原子核由质子和中子组成的理论。1913年英国化学家索迪提出“?同位素”?概念.1919年阿斯登用质谱仪精确的确是了原子量.1913年丹麦物理学家玻尔用他的原子结构模型成功的解释了氢元素的线光谱。1923--1924年法国年青物理学家德布罗依提出“?物质波”概念,?1926年德国物理乒家薛定谔提出了解决微观粒子运动方程,?对核外电子运功状态和能级的计算提供了依据。?

遵循周期律,?把众多的元素(106种)组织在一起所形成的系统,?称做化学元素周期系。周期系的具体形式是各式各样的周期表。如塔式表、三分族元素周期表环形、螺旋形、扇形、蜗牛形,?对角形、带形、立体支架形、阶梯形、罗盘形、园筒式等五花八门,?各具特色。但其中最常用的是短表和长表。近年来,?由于人工合成元素增多,?长表的优越性日益显露出来,?短表已经完成了历史使命,?更多的应用让位于长表。长表的重要特点之一是能够很好的把元素分成元素群,?便于按群体性质来掌握化学元素的总体知识。表中明显的划分出活泼金属、非金属、过渡元素、低熔合金、镧系、锕系元素区。根据电子构型可分成S区、p区、d区、f区四组。便于人们从结构观点去分析比较。

元素周期表的简介

化学元素周期表是根据原子序数从小至大排序的化学元素列表。列表大体呈长方形,某些元素周期中留有空格,使特性相近的元素归在同一族中,如碱金属元素、碱土金属、卤族元素、稀有气体等。这使周期表中形成元素分区且分有七主族、七副族、Ⅷ族、0族。由于周期表能够准确地预测各种元素的特性及其之间的关系,因此它在化学及其他科学范畴中被广泛使用,作为分析化学行为时十分有用的框架。

俄国化学家门捷列夫于1869年发明周期表,此后不断有人提出各种类型周期表不下170余种,归纳起来主要有:短式表(以门捷列夫为代表)、长式表(维尔纳式为代表)、特长表(以波尔塔式为代表);平面螺线表和圆形表(以达姆开夫式为代表);立体周期表(以莱西的圆锥柱立体表为代表)等。

中国教学上长期使用的是长式周期表。

基本概念

元素的物理、化学性质随原子序数逐渐变化的规律叫做元素周期律来源:https://www.yz66.net/cshi/202501-3399.html。元素周期律由门捷列夫首先发现,并根据此规律创制了元素周期表。

元素周期律的发现

19世纪60年代,化学家已经发现了60多种元素,并积累了这些元素的原子量数据,为寻找元素间的内在联系创造必要的条件.俄国著名化学家门捷列夫和德国化学家迈耶尔等分别根据原子量的大小,将元素进行分类排队,发现元素性质随原子量的递增呈明显的周期变化的规律.1868年,门捷列夫经过多年的艰苦探索,发现了自然界中一个极其重要的规律—元素周期规律.这个规律的发现是继原子-分子论之后,近代化学史上的又一座光彩夺目的里程碑,它所蕴藏的丰富和深刻的内涵,对以后整个化学和自然科学的发展都具有普遍的知道意义.1869年,门捷列夫提出第一张元素周期表,根据周期律修正了铟、铀、钍、铯等9种元素的原子量;他还预言了三种新元素及其特性,并暂时取名为类铝、类硼、类硅,这就是1871年发现的镓、1880年发现的钪和1886年发现的锗.这些新元素的原子量、密度和物理化学性质都与门捷列夫的预言惊人相符,周期律的正确性由此得到了举世公认.

[编辑本段]元素周期律的内涵

结合元素周期表,元素周期律可以表述为:元素的性质 随着原子序数的递增而呈周期性的递变规律。

元素周期律的本质:元素核外电子排布的周期性决定了元素性质的周期性。

元素周期律的内容:

原子半径变化示意图一、原子半径

同一周期(稀有气体除外),从左到右,随着原子序数的递增,元素原子的半径递减;

同一族中,从上到下,随着原子序数的递增,元素原子半径递增。

二、主要化合价(最高正化合价和最低负化合价)

同一周期中,从左到右,随着原子序数的递增,元素的最高正化合价递增(从+1价到+7价),第一周期除外,第二周期的O、F元素除外;

最低负化合价递增(从-4价到-1价)第一周期除外,由于金属元素一般无负化合价,故从ⅣA族开始。

三、元素的金属性和非金属性

同一周期中,从左到右,随着原子序数的递增,元素的金属性递减,非金属性递增;

同一族中,从上到下,随着原子序数的递增,元素的金属性递增,非金属性递减; 来源:https://www.faithandyoung.com/cshi/202501-6423.html

四、单质及简单离子的氧化性与还原性来源:https://wzwebi.com/cshi/202501-523.html

同一周期中,从左到右,随着原子序数的递增,单质的氧化性增强,还原性减弱;所对应的简单阴离子的还原性减弱,简单阳离子的氧化性增强。

同一族中,从上到下,随着原子序数的递增,单质的氧化性减弱,还原性增强;所对应的简单阴离子的还原性增强,简单阳离子的氧化性减弱。

元素单质的还原性越强,金属性就越强;单质氧化性越强,非金属性就越强。

五、最高价氧化物所对应的水化物的酸碱性

同一周期中,元素最高价氧化物所对应的水化物的酸性增强(碱性减弱);

同一族中,元素最高价氧化物所对应的水化物的碱性增强(酸性减弱)。

六、单质与氢气化合的难易程度

同一周期中,从左到右,随着原子序数的递增,单质与氢气化合越容易;

同一族中,从上到下,随着原子序数的递增,单质与氢气化合越难。

七、气态氢化物的稳定性

同一周期中,从左到右,随着原子序数的递增,元素气态氢化物的稳定性增强;

同一族中,从上到下,随着原子序数的递增,元素气态氢化物的稳定性减弱。

此外还有一些对元素金属性、非金属性的判断依据,可以作为元素周期律的补充:

随着从左到右价层轨道由空到满的逐渐变化,元素也由主要显金属性向主要显非金属性逐渐变化。

随同一族元素中,由于周期越高,价电子的能量就越高,就越容易失去,因此排在下面的元素一般比上面的元素更具有金属性。

元素的最高价氢氧化物的碱性越强,元素金属性就越强;最高价氢氧化物的酸性越强,元素非金属性就越强。

元素的气态氢化物越稳定,非金属性越强。

同一族的元素性质相近。来源:https://wzwebi.com/cshi/202501-797.html

具有同样价电子构型的原子,理论上得或失电子的趋势是相同的,这就是同一族元素性质相近的原因。

以上规律不适用于稀有气体。

还有一些根据元素周期律得出的结论:

元素的金属性越强,其第一电离能就越小;非金属性越强,其第一电子亲和能就越大。

同一周期元素中,轨道越“空”的元素越容易失去电子,轨道越“满”的越容易得电子。来源:https://wzwebi.com/cshi/202501-530.html

[编辑本段]元素周期律的意义

元素周期律是自然科学的基本规律,也是无机化学的基础。各种元素形成有周期性规律的体系,成为元素周期系,元素周期表则是元素周期系的表现形式。

元素周期表是学习和研究化学的一种重要工具.元素周期表是元素周期律的具体表现形式,它反映了元素之间的内在联系,是对元素的一种很好的自然分类.我们可以利用元素的性质、它在周期表中的位置和它的原子结构三者之间的密切关系来指导我们对化学的学习研究。

过去,门捷列夫曾用元素周期律来预言未知元素并获得了证实。此后,人们在元素周期律和周期表的指导下,对元素的性质进行了系统的研究,对物质结构理论的发展起了一定的推动作用。不仅如此,元素周期律和周期表为新元素的发现及预测它们的原子结构和性质提供了线索。来源:https://wzwebi.com/cshi/202501-394.html

元素周期律和周期表对于工农业生产也有一定的指导作用。由于在周期表中位置靠近的元素性质相近,这样就启发了人们在周期表中一定的区域内寻找新的物质。

元素周期律的重要意义,还在于它从自然科学方面有利地论证了事物变化中量变引起质变的规律性。

元素周期律和周期表,揭示了元素之间的内在联系,反映了元素性质与它的原子结构的关系,在哲学、自然科学、生产实践各方面,都有重要意义。

(1)在 哲学方面,元素周期律揭示了元素原子核电荷数递增引起元素性质发生周期性变化的事实,从自然科学上有力地论证了事物变化的量变引起质变的规律性。元素周期 表是周期律的具体表现形式,它把元素纳入一个系统内,反映了元素间的内在联系,打破了曾经认为元素是互相孤立的形而上学观点。通过元素周期律和周期表的学 习,可以加深对物质世界对立统一规律的认识。

(2)在 自然科学方面,周期表为发展物质结构理论提供了客观依据。原子的电子层结构与元素周期表有密切关系,周期表为发展过渡元素结构,镧系和锕系结构理论,甚至 为指导新元素的合成,预测新元素的结构和性质都提供了线索。元素周期律和周期表在自然科学的许多部门,首先是化学、物理学、生物学、地球化学等方面,都是 重要的工具。

(3)在生产上的某些应用

由于在周期表中位置靠近的元素性质相似,这就启发人们在周期表中一定的区域内寻找新的物质。

①农药多数是含Cl、P、S、N、As等元素的化合物。

②半导体材料都是周期表里金属与非金属接界处的元素,如Ge、Si、Ga、Se等。

③催化剂的选择:人们在长期的生产实践中,已发现过渡元素对许多化学反应有良好的催化性能。进一步研究发现,这些元素的催化性能跟它们的原子的d轨道没有充满有密切关系。于是,人们努力在过渡元素(包括稀土元素)中寻找各种优良催化剂。例如,目前人们已能用铁、镍熔剂作催化剂,使石墨在高温和高压下转化为金刚石;石油化工方面,如石油的催化裂化、重整等反应,广泛采用过渡元素作催化剂,特别近年来发现少量稀土元素能大大改善催化剂的性能。

④耐高温、耐腐蚀的特种合金材料的制取:在周期表里从ⅢB到ⅥB的过渡元素,如钛、钽、钼、钨、铬,具有耐高温、耐腐蚀等特点。它们是制作特种合金的优良材料,是制造火箭、导弹、宇宙飞船、飞机、坦克等的不可缺少的金属。

⑤矿物 的寻找:地球上化学元素的分布跟它们在元素周期表里的位置有密切的联系。科学实验发现如下规律:原子量较小的元素在地壳中含量较多,原子量较大的元素在地 壳中含量较少;偶数原子序的元素较多,奇数原子序的元素较少。处于地球表面的元素多数呈现高价,处于岩石深处的元素多数呈现低价;碱金属一般是强烈的亲石 元素,主要富集于岩石圈的最上部;熔点、离子半径、电负性大小相近的元素往往共生在一起,同处于一种矿石中。在岩浆演化过程中,电负性小的、离子半径较小 的、熔点较高的元素和化合物往往首先析出,进入晶格,分布在地壳的外表面。

有的科学家把周期表中性质相似的元素分为十个区域,并认为同一区域的元素往往是伴生矿,这对探矿具有指导意义。来源:https://wzwebi.com/cshi/202501-698.html

简史 1829年,德国J.W.德贝赖纳在研究元素的原子量与化学性质的关系时,发现有几个相似的元素组:①锂、钠、钾。②钙、锶、钡。③氯、溴、碘。④硫、硒、碲。⑤锰、铬、铁。同组元素的性质相似,中间元素的化学性质介于前后两个元素之间,它的原子量也差不多是前后两个元素的平均值。1862年,法国B.de尚古多提出元素性质有周期性重复出现的规律,他创造了一种螺旋图,将62个元素按原子量大小循序标记在绕着圆柱体上升的螺线上,可以清楚地看出某些性质相近的元素都出现在同一条母线上。1864年,英国W.奥德林发表了一张比较详细的周期表,表中的元素基本上按原子量递增的顺序排列,体现了元素性质随原子量递增会出现周期性的变化。他还在表中留下空位,认识到它们是尚未被发现但性质与同一横列元素相似的元素。1865年,英国J.A.R.纽兰兹把当时已发现的元素按原子量大小顺序排列,发现从任意一个元素算起,每到第八个元素,就和第一个元素的性质相似,他把这个规律称为八音律。对元素周期律的发展贡献最大的当推俄国D.I.门捷列夫和德国J.L.迈尔。门捷列夫曾经收集了许多元素性质的数据,并加以整理,在这一过程中,他紧紧抓住元素的基本特征——原子量,探索原子量与元素性质的关系。他发现,如果把所有当时已知的元素按照原子量递增的顺序排列起来,经过一定的间隔,元素的性质会呈现明显的周期性。1869年,他发表了第一张元素周期表,同年3月,他委托N.A.缅舒特金在俄罗斯化学会上宣读了论文“元素属性和原子量的关系”,阐述了周期律的基本要点:①将元素按照原子量大小顺序排列起来,在性质上呈现明显的周期性。②原子量的大小决定元素的特性。③应该预料到许多未知元素的被发现。④当知道了某元素的同类元素后,有时可以修正该元素的原子量。在这张周期表中,有4个位置只标出原子,在应该写元素符号的地方却打了一个问号。这是因为门捷列夫在设计周期表时,当他按原子量递增的顺序将元素排列到钙(原子量为40)时,在当时已知的元素中,原子量比40大的元素是钛(原子量为50),这样,钙后面的一个元素似乎是钛。但是,门捷列夫发现,如果照这样的次序排列,钛就和铝属于同一族,实际上钛的性质并不与铝相似,而与铝的后面一个元素硅相似,因此他断定钛应该与硅属于同一族,在钙与钛之间应该存在着一个元素,虽然这个元素尚未被发现,但应该为它留出空位。根据同样理由,他认为在锌与砷、钡与钽之间也应留下空位,因此他预言了原子量为45、68、70的3种未知元素的性质,并命名为类硼、类铝、类硅。后来,这3种元素先后被发现,1875年P.-E.L.de布瓦博德朗发现的镓即类铝,1879年L.F.尼尔松发现的钪即类硼,1886年C.温克勒尔发现的锗即类硅。这3种新发现的元素的性质与门捷列夫的预言很吻合, 证明了周期律的正确性。1870年迈尔发表了一张元素周期表,指出元素的性质是原子量的函数,他所依据的事实偏重元素的物理性质。他对于族的划分也比门捷列夫的周期表更加完善,例如将汞与镉、铅与锡、硼与铝列为同族元素。

周期规律 元素呈现种种物理性质上的周期性,例如随着元素原子序数的递增,原子体积呈现明显的周期性,在化学性质方面,元素的化合价、电负性、金属和非金属的活泼性,氧化物和氢氧化物酸碱性的变迁,金属性和非金属性的变迁也都具有明显的周期规律。在同一周期中,这些性质都发生逐渐的变化,到了下一周期,又重复上一周期同族元素的性质。

应用 周期律在使化学知识特别是无机化学知识的系统化上起了重要作用,对于研究无机化合物的分类、性质、结构及其反应方面起了指导作用。周期律在指导原子核的研究上也有深刻的影响,放射性的位移定律就是以周期律为依据的,原子核的种种人工蜕变也都是按照元素在周期表中的位置来实现的。20世纪以后,新元素的不断发现,填充了周期表中的空位,科学家在周期律指导下,还合成了超铀元素,并发展了锕系理论。在原子结构的研究上,也获得了壳层结构的周期规律。

关于“物质的本质:化学元素周期表解析”这个话题的介绍,今天小编就给大家分享完了,如果对你有所帮助请保持对本站的关注!