网上有关“生物:什么是碱基?”话题很是火热,小编也是针对生物:什么是碱基来源:----https://wzwebi.com/cshi/202501-150.html?寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您来源:----https://nanren30.com/cshi/202501-257.html。来源:----https://www.nanren30.com/cshi/202501-165.html
碱基(base)
碱基指嘌呤和嘧啶的衍生物,是核酸、核苷、核苷酸的成分。DNA和RNA的主要碱基略有不同,其重要区别是:胸腺嘧啶是DNA的主要嘧啶碱,在RNA中极少见;相反,尿嘧啶是RNA的主要嘧啶碱,在DNA中则是稀有的来源:----https://www.wzwebi.com/xwzx/202412-144.html。
除主要碱基外,核酸中也有一些含量很少的稀有碱基。稀有碱基的结构多种多样,多半是主要碱基的甲基衍生物。tRNA往往含有较多的稀有碱基,有的tRNA含有的稀有碱基达到10%。嘌呤和嘧啶碱基是近乎平面的分子,相对难溶于水:在约260纳米的紫外光区有较强的吸收。 结构
在脱氧核糖核酸和核糖核酸中,起配对作用的部分是含氮碱基。5种碱基都是杂环化合物,氮原子位于环上或取代氨基上,其中一部分(取代氨基,以及嘌呤环的1位氮、嘧啶环的3位氮)直接参与碱基配对。 碱基置换类型及缺失和插入突变示意图[2]碱基共有5种:胞嘧啶(缩写作C)、鸟嘌呤(G)、腺嘌呤(A)、胸腺嘧啶(T,DNA专有)和尿嘧啶(U,RNA专有)。顾名思义,5种碱基中,腺嘌呤和鸟嘌呤属于嘌呤族(缩写作R),它们具有双环结构。胞嘧啶、尿嘧啶、胸腺嘧啶属于嘧啶族(Y),它们的环系是一个六元杂环。RNA中,尿嘧啶取代了胸腺嘧啶的位置。值得注意的是,胸腺嘧啶比尿嘧啶多一个5位甲基,这个甲基增大了遗传的准确性。来源:----https://wzwebi.com/bkjj/202412-102.html
碱基通过共价键与核糖或脱氧核糖的1位碳原子相连而形成的化合物叫核苷。核苷再与磷酸结合就形成核苷酸,磷酸基接在五碳糖的5位碳原子上。
作用 组成DNA
DNA(脱氧核糖核酸)的结构出奇的简单。DNA分子由两条很长的糖链结构构成骨架,通过碱基对结合在一起,就象梯子一样。整个分子环绕自身中轴形成一个双螺旋。两条链的空间是一定的,为2nm。 碱基在形成稳定螺旋结构的碱基对中共有4种不同碱基。根据它们英文名称的首字母分别称之为A(ADENINE 腺嘌呤)、T(THYMINE 胸腺嘧啶)、C(CYTOSINE 胞嘧啶)、G(GUANINE 鸟嘌呤),另有U(URACIL尿嘧啶)。DNA与RNA共有的碱基是腺嘌呤、胞嘧啶和鸟嘌呤。胸腺嘧啶存在于DNA中,而尿嘧啶则存在于RNA中。每种碱基分别与另一种碱基的化学性质完全互补,嘌呤是双环,嘧啶是单环,两个嘧啶之间空间太大,而嘌呤之间空间不够。这样A总与T配对,G总与C配对。这四种化学“字母”沿DNA骨架排列来源:----https://nanren30.com/xwzx/202412-120.html。“字母”(碱基)的一种独特顺序就构成一个“词”(基因)。每个基因有几百甚至几万个碱基对。
嘌呤和嘧啶都有酮-烯醇式互变异构现象,一般生理pH条件下呈酮式。 AGCT(U)四种碱基在DNA中的排列遵循碱基互补配对原则
有些核酸中含有修饰碱基(或稀有碱基),这些碱基大多是在上述嘌呤或嘧啶碱的不同部位甲基化(methylation)或进行其它的化学修饰而形成的衍生物。例如有些DNA分子中含有5-甲基胞嘧啶(m5C),5-羟甲基胞嘧啶(hm5C)。某些RNA分子中含有1-甲基腺嘌呤(m1A)、2,2-二甲基鸟嘌呤(m22G)和5,6-二氢尿嘧啶(DHU)等。
构成物质
碱基还构成一些生命必须物质或是重要的辅酶,如ATP,GTP,CoA等,对生命活动的作用非常大。
互补原则
(the principle of complementary base-pairing) 碱基在DNA分子结构中,由于碱基之间的氢键具有固定的数目和DNA两条链之间的距离保持不变,使得碱基配对必须遵循一定的规律,这就是Adenine(A,腺嘌呤)一定与Thymine(T,胸腺嘧啶)配对,Guanine(G,鸟嘌呤)一定与Cytosine(C,胞嘧啶)配对,反之亦然。碱基间的这种一一对应的关系叫做碱基互补配对原则。
腺嘌呤与胸腺嘧啶之间有两个氢键,鸟嘌呤与胞嘧啶之间有三个氢键,即A=T,G≡C。根据碱基互补配对的原则,一条链上的A一定等于互补链上的T;一条链上的G一定等于互补链上的C,反之如此。来源:----https://wzwebi.com/bkjj/202412-92.html
在DNA转录成RNA时,有两种方法根据碱基互补配对原则判断:1)将模板链根据原则得出一条链,再将得出的链中的T改为U(尿嘧啶)即可;2)将非模板链的T改为U即可。如:DNA:ATCGAATCG(将此为非模板链)TAGCTTAGC(将此为模板链)转录出的mRNA:AUCGAAUCG(可看出只是将非模板链的T改为U,所以模板链又叫无义链。这也是中心法则和碱基互补配对原则的体现。)
DNA和RNA的五碳糖和碱基有什么区别?
碱基间的这种一一对应的关系叫做碱基互补配对原则。腺嘌呤与胸腺嘧啶之间有两个氢键,鸟嘌呤与胞嘧啶之间有三个氢键,即A=T, G≡C根据碱基互补配对的原则,一条链上的A一定等于互补链上的T;一条链上的G一定等于互补链上的C,反之如此。因此,可推知多条用于碱基计算的规律。规律一:在一个双链DNA分子中,A=T、G=C。即:A+G=T+C或A+C=T+G。也就是说,嘌呤碱基总数等于嘧啶碱基总数,各占全部碱基总数的50%。规律二:在双链DNA分子中,两个互补配对的碱基之和的比值与该DNA分子中每一单链中这一比值相等。(A1+A2+T1+T2)/(G1+G2+C1+C2)=(A1+T1)/(G1+C1)=(A2+T2)/(G2+C2)规律三:DNA分子一条链中,两个不互补配对的碱基之和的比值等于另一互补链中这一比值的倒数,即DNA分子一条链中 的比值等于其互补链中这一比值的倒数。(A1+G1)/(T1+C1)=(T2+C2)/(A2+G2)规律四:在双链DNA分子中,互补的两个碱基和占全部碱基的比值等于其中任何一条单链占该碱基比例的比值,且等于其转录形成的mRNA中该种比例的比值。即双链(A+T)%或(G+C)%=任意单链 (A+T)%或(G+C)%=mRNA中 (A+U)%或(G+C)%。规律五:不同生物的DNA分子中,其互补配对的碱基之和的比值(A+T)/(G+C)不同,代表了每种生物DNA分子的特异性。关于碱基互补配对规律的计算,其生物学知识基础是:基因控制蛋白质的合成。由于基因控制蛋白质的合成过程是:(1)微观领域———分子水平的复杂生理过程,学生没有感性知识为基础,学习感到非常抽象。(2)涉及到多种碱基互补配对关系,DNA分子内部有A与T配对,C与G配对;DNA分子的模板链与生成的RNA之间有A与U配对,T与A配对,C与G配对。学习过程中,学生不易认识清楚。(3)涉及许多数量关系(规律),在DNA双链中,①A等于T,G等于C,A+GT+C等于A+GT+C等1。②一条单链的A+GT+C的值与另一条互补单链的A+GT+C的值互为倒数。③一条单链的A+TC+G的值,与另一条互补链的A+TC+G的值相等。④在双链DNA及其转录的RNA之间有下列关系:一条链上的(A+T)等于另一条链上的(A+T)等于RNA分子中(A+U)等于12DNA双链中的(A+T)等,学生往往记不住。再加之转录、翻译是在不同场所进行的,学生分析问题时难以把二者联系起来。以上分析说明,关于碱基互补配对规律的计算既是教的一个难点,也是学的一个难点。教学中,如果能做到:(1)把复杂抽象的生理过程用简单直观的图示表现出来;(2)把在不同场所进行的生理过程放在一起思考;(3)把记忆复杂繁琐的公式(规律)转变成观察图示找出数量关系;(4)在计算时把表示数的符号注上脚标,以免混淆,就能轻轻松松闯过这一难关另外,在DNA转录成RNA时,有两种方法根据碱基互补配对原则判断:1)将模板链根据原则得出一条链,再将得出的链中的T改为U(尿嘧啶)即可;2)将非模板链的T改为U即可。如:DNA: ATCGAATCG (将此为非模板链)TAGCTTAGC(将此为模板链)转录出的mRNA:AUCGAAUCG(可看出只是将非模板链的T改为U,所以模板链又叫无义链来源:----https://wzwebi.com/cshi/202412-52.html。这也是中心法则和碱基互补配对原则的体现。)
一、组成不同
1、五碳糖:又叫戊糖,一个分子中含有5个碳原子的糖。来源:----https://wzwebi.com/zhishi/202412-50.html
2、碱基:是指嘌呤和嘧啶的衍生物,是核酸、核苷、核苷酸的成分。来源:----https://wzwebi.com/bkjj/202412-96.html
二、结构不同来源:----https://wzwebi.com/cshi/202412-108.html
1、五碳糖:戊糖中最重要的有核糖(醛糖)、脱氧核糖(醛糖)和核酮糖(酮糖)。核糖和脱氧核糖是核酸的重要成分;核酮糖是重要的中间代谢物,又称木糖。
2、碱基:碱基都是杂环化合物,氮原子位于环上或取代氨基上,其中一部分(取代氨基,以及嘌呤环的1位氮、嘧啶环的3位氮)直接参与碱基配对。
三、作用不同
1、五碳糖:形成的还原型烟酰胺腺嘌呤二核苷酸磷酸(NADPH)是许多生物合成反应的必要供氢载体,如脂肪酸及甾体化合物的合成,NADPH也可作为单加氧酶体系的供氢体参与毒物和药物的生物转化过程来源:----https://62v5.com/zhishi/202412-35.html。
红细胞中的NADPH是维持血红蛋白正常发挥功能而免于被过氧化氢等氧化成高铁血红蛋白的重要物质来源:----https://wzwebi.com/cshi/202501-234.html。否则H2O2的积累可以造成细胞膜中脂质的过氧化。
2、碱基:每种碱基分别与另一种碱基的化学性质完全互补,嘌呤是双环,嘧啶是单环,两个嘧啶之间空间太大,而嘌呤之间空间不够。这样A总与T配对,G总与C配对。?碱基还构成一些生命必须物质或是重要的辅酶,如ATP,GTP,CoA等,对生命活动的作用非常大。
百度百科-五碳糖
百度百科-碱基
关于“生物:什么是碱基?”这个话题的介绍,今天小编就给大家分享完了,如果对你有所帮助请保持对本站的关注!