网上有关“研究纳米技术的意义”话题很是火热,小编也是针对研究纳米技术的意义寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。
纳米技术(nanotech)是在原子、分子和超分子尺度上对物质进行处理的技术。对纳米技术最早、最宽泛的定义是指通过精确操纵原子和分子来制造大规模产品的特殊技术手段,现在也被称为分子纳米技术。国家纳米技术计划随后对纳米技术进行了更广义的描述,该计划将纳米技术定义为在至少一维尺度下对1至100纳米的物质进行处理。这个定义反映了这样一个事实,即在这个量子领域尺度上量子力学效应是至关重要的,因此这个定义从一个特定的技术目标转变为在一个包含所有类型研究和技术的范畴内,对于低于给定尺寸阈值物质的特定性质进行处理。因此,常见的是看到复数形式的“纳米技术”和“纳米级技术”,指的是对尺寸这一共同特征宽领域的研究和应用。
纳米技术按尺寸定义通常非常广泛,包括表面科学、有机化学、分子生物学、半导体物理、储能 ,微制造, 分子工程等各种科学领域。相关的研究和应用同样多样化,从传统器件物理的扩展到基于分子自组装的全新方法,从开发纳米级尺寸的新材料到直接控制原子尺度的物质。
科学家们目前正在讨论纳米技术的未来影响来源:https://yz66.net/cshi/202501-1588.html。纳米技术可能能够创造出许多能够广泛应用的新材料和新设备,如纳米医学、纳米电子学、生物材料能源生产和消费品。另一方面,纳米技术引起了许多与任何新技术相同的问题,包括纳米材料的毒性和环境影响,及其对全球经济的潜在影响,以及对各种世界末日情景的猜测。这些担忧引发了倡导团体和政府之间关于是否有必要对纳米技术进行特别监管的争论。
纳米技术的用途
纳米技术的应用纳米技术目前已成功用于许多领域,包括医学、药学、化学及生物检测、制造业、光学以及国防等等。本词条为纳米技术应用的总纲,包括如下领域:
1、纳米技术在新材料中的应用
2、纳米技术在微电子、电力等领域中的应用
3、纳米技术在制造业中的应用
4、纳米技术在生物、医药学中的应用
5、纳米技术在化学、环境监测中的应用
6、纳米技术在能源、交通等领域的应用
7、纳米技术在农业中的应用
8、 纳米技术在日常生活中的应用
衣在纺织和化纤制品中添加纳米微粒,可以除味杀菌。化纤布虽然结实,但有烦人的静电现象,加入少量金属纳米微粒就可消除静电现象。
食利用纳米材料,冰箱可以抗菌。纳米材料做的无菌餐具、无菌食品包装用品已经面世。利用纳米粉末,可以使废水彻底变清水,完全达到饮用标准。纳米食品色香味俱全,还有益健康。
住纳米技术的运用,使墙面涂料的耐洗刷性可提高10倍。玻璃和瓷砖表面涂上纳米薄层,可以制成自洁玻璃和自洁瓷砖,根本不用擦洗。含有纳米微粒的建筑材料,还可以吸收对人体有害的紫外线。
行
纳米材料可以提高和改进交通工具的性能指标。纳米陶瓷有望成为汽车、轮船、飞机等发动机部件的理想材料,能大大提高发动机效率、工作寿命和可靠性。纳米卫星可以随时向驾驶人员提供交通信息,帮助其安全驾驶。
医利用纳米技术制成的微型药物输送器,可携带一定剂量的药物,在体外电磁信号的引导下准确到达病灶部位,有效地起到治疗作用,并减轻药物的不良的反映。用纳米制造成的微型机器人,其体积小于红细胞,通过向病人血管中注射,能疏通脑血管的血栓。清除心脏动脉的脂肪和沉淀物,还可“嚼碎”泌尿系统的结石等。纳米技术将是健康生活的好帮手。
纳米技术应用前景十分广阔,经济效益十分巨大,美国权威机构预测,2010年纳米技术市场估计达到14400亿美元,纳米技术未来的应用将远远超过计算机工业。纳米复合、塑胶、橡胶和纤维的改性,纳米功能涂层材料的设计和应用,将给传统产生和产品注入新的高科技含量。专家指出,纺织、建材、化工、石油、汽车、军事装备、通讯设备等领域,将免不了一场因纳米而引发的“材料革命”现在我国以纳米材料和纳米技术注册的公司有近100个,建立了10多条纳米材料和纳米技术的生产线。纳米布料、服装已批量生产,象电脑工作装、无静电服、防紫外线服等纳米服装都已问世。加入纳米技术的新型油漆,不仅耐洗刷的性能提高了十几倍,而且无毒无害无异味来源:https://wzwebi.com/cshi/202501-303.html。纳米技术正在改善着、提高着人们的生活质量。
纳米技术 - 基本概念
纳米技术
纳米科学与技术,有时简称为纳米技术,是研究结构尺寸在0.1至100纳米范围内材料的性质和应用。
1981年扫描隧道显微镜发明后,诞生了一门以0.1到100纳米长度为研究分子世界,它的最终目标是直接以原子或分子来构造具有特定功能的产品。因此,纳米技术其实就是一种用单个原子、分子射程物质的技术。
纳米技术是一门交叉性很强的综合学科,研究的内容涉及现代科技的广阔领域。纳米科学与技术主要包括:纳米体系物理学、纳米化学、纳米材料学、纳米生物学、纳米电子学、纳米加工学、纳米力学等 。纳米材料的制备和研究是整个纳米科技的基础。其中,纳米物理学和纳米化学是纳米技术的理论基础,而纳米电子学是纳米技术最重要的内容。
从迄今为止的研究来看,关于纳米技术分为三种概念:
第一种,是1986年美国科学家德雷克斯勒博士在《创造的机器》一书中提出的分子纳米技术。根据这一概念,可以使组合分子的机器实用化,从而可以任意组合所有种类的分子,可以制造出任何种类的分子结构。这种概念的纳米技术还未取得重大进展。 来源:https://wzwebi.com/cshi/202501-313.html
第二种概念把纳米技术定位为微加工技术的极限。也就是通过纳米精度的“加工”来人工形成纳米大小的结构的技术。这种纳米级的加工技术,也使半导体微型化即将达到极限。现有技术即使发展下去,从理论上讲终将会达到限度,这是因为,如果把电路的线幅逐渐变小,将使构成电路的绝缘膜变得极薄,这样将破坏绝缘效果。此外,还有发热和晃动等问题。为了解决这些问题,研究人员正在研究新型的纳米技术。
第三种概念是从生物的角度出发而提出的。本来,生物在细胞和生物膜内就存在纳米级的结构。DNA分子计算机、细胞生物计算机的开发,成为纳米生物技术的重要内容。
纳米技术 - 发展历史
纳米技术的灵感,来自于已故物理学家理查德·费曼1959年所作的一次题为《在底部还有很大空间》的演讲。这位当时在加州理工大学任教的教授向同事们提出了一个新的想法。从石器时代开始,人类从磨尖箭头到光刻芯片的所有技术,都与一次性地削去或者融合数以亿计的原子以便把物质做成有用的形态有关。费曼质认为,物理学的规律不排除一个原子一个原子地制造物品的可能性。
著名物理学家、诺贝尔奖获得者理查德· 费曼预言,人类可以用小的机器制作更小的机器,最后将变成根据人类意愿,逐个地排列原子,制造产品,这是关于纳米技术最早的梦想;
20世纪70年代,科学家开始从不同角度提出有关纳米科技的构想,1974年,科学家唐尼古奇最早使用纳米技术一词描述精密机械加工;
1982年,科学家发明研究纳米的重要工具——扫描隧道显微镜,为我们揭示一个可见的原子、分子世界,对纳米科技发展产生了积极促进作用;
1990年7月,第一届国际纳米科学技术会议在美国巴尔的摩举办,标志着纳米科学技术的正式诞生;
1990年,IBM公司阿尔马登研究中心的科学家成功地对单个的原子进行了重排,纳米技术取得一项关键突破。他们使用一种称为扫描探针的设备慢慢地把35个原子移动到各自的位置,组成了IBM三个字母。这证明费曼是正确的。使用分子束外延长生长技术,科学家们学会了制造极薄的特殊晶体薄膜的方法,每次可只造出一层分子。
1991年,碳纳米管被人类发现,它的质量是相同体积钢的六分之一,强度却是钢的10倍,成为纳米技术研究的热点,诺贝尔化学奖得主斯莫利教授认为,纳米碳管将是未来最佳纤维的首选材料,也将被广泛用于超微导线、超微开关以及纳米级电子线路等;
1993年,继1989年美国斯坦福大学搬走原子团“写”下斯坦福大学英文、1990年美国国际商用机器公司在镍表面用36个氙原子排出“IBM”之后,中国科学院北京真空物理实验室自如地操纵原子成功写出“ 中国”二字,标志着中国开始在国际纳米科技领域占有一席之地;
1997年,美国科学家首次成功地用单电子移动单电子,利用这种技术可望在20年后研制成功速度和存贮容量比现在提高成千上万倍的量子计算机;
1999年,巴西和美国科学家在进行纳米碳管实验时发明了世界上最小的“秤”,它能够称量十亿分之一克的物体,即相当于一个病毒的重量;此后不久,德国科学家研制出能称量单个原子重量的秤,打破了美国和巴西科学家联合创造的纪录;
到1999年,纳米技术逐步走向市场,全年基于纳米产品的营业额达到500亿美元;
2000年以来,一些国家纷纷制定相关战略或者计划,投入巨资抢占纳米技术战略高地。日本设立纳米材料研究中心,把纳米技术列入新5年科技基本计划的研发重点;德国专门建立纳米技术研究网;美国将纳米计划视为下一次工业革命的核心,美国政府部门将纳米科技基础研究方面的投资从1997年的1.16亿美元增加到2001年的4.97亿美元。
纳米技术 - 技术分支
1993年,第一届国际纳米技术大会(INTC)在美国召开,将纳米技术划分为6大分支:纳米物理学、纳米生物学、纳米化学、纳米电子学、纳米加工技术和纳米计量学。
纳米动力学
纳米动力学,主要是微机械和微电机,或总称为微型电动机械系统(MEMS),用于有传动机械的微型传感器和执行器、光纤通讯系统、特种电子设备、医疗和诊断仪器等。采用的是一种类似于集成电器设计和制造的新工艺。特点是部件很小,刻蚀的深度往往要求数十至数百微米,而宽度误差很小。这种工艺还可用于制作三相电动机,用于超快速离心机或陀螺仪等。在研究方面还要相应地检测准原子尺度的微变形和微摩擦等。虽然它们目前尚未真正进入纳米尺度,但有很大的潜在科学价值和经济价值。
理论上讲:可以使微电机和检测技术达到纳米数量级。
纳米生物学和纳米药物学
纳米生物学和纳米药物学,如在云母表面用纳米微粒度的胶体金固定DNA的粒子,在二氧化硅表面的叉指形电极做生物分子间互作用的试验,检测磷脂和脂肪酸双层平面生物膜、DNA的精细结构等。有了纳米技术,还可用自组装方法在细胞内放入零件或组件使构成新的材料。新的药物,即使是微米粒子的细粉,也大约有半数不溶于水;但如粒子为纳米尺度(即超微粒子),则可溶于水。
纳米生物学发展到一定技术时,可以用纳米材料制成具有识别能力的纳米生物细胞,并可以吸收癌细胞的生物医药,注入人体内,可以用于定向杀癌细胞。
纳米电子学
纳米电子学,包括基于量子效应的纳米电子器件、纳米结构的光/电性质、纳米电子材料的表征,以及原子操纵和原子组装等。当前电子技术的趋势要求器件和系统更小、更快、更冷。更小,是指响应速度要快。更冷是指单个器件的功耗要小。但是更小并非没有限度。 纳米技术是建设者的最后疆界,它的影响将是巨大的。
纳米技术 - 研究应用原子力显微镜——纳米测量技术
主要包括:纳米级测量技术;纳米级表层物理力学性能的检测技术;纳米级加工技术;纳米粒子的制备技术;纳米材料;纳米生物学技术;纳米组装技术等。
1、纳米是一种几何尺寸的度量单位,1纳米=百万分之一毫米。
2、纳米技术带动了技术革命。
3、利用纳米技术制作的药物可以阻断毛细血管,“饿死”癌细胞。 来源:https://wzwebi.com/cshi/202501-491.html
4、如果在卫星上用纳米集成器件,卫星将更小,更容易发射。
5、纳米技术是多科学综合,有些目标需要长时间的努力才会实现。
6、纳米技术和信息科学技术、生命科学技术是当前的科学发展主流,它们的发展将使人类社会、生存环境和科学技术本身变得更美好。
污水处理来源:https://wzwebi.com/cshi/202501-327.html
与传统的水处理方法相比,纳米净水处理占地小,人力和能源消耗少,这使它有可能成为帮助发展中国家乃至全球缓解已经来临的水危机的一个重要途径。[1] 2012年4月,英国曼切斯特大学纳米技术专家称,他们将通过新型纳米材料从厕所废水中提取生物燃料,并将其净化成饮用水。这项新发明得到比尔-盖茨与梅琳达-盖茨基金会赞助,预计可以解决发展中国家数百万人用水难的问题[2]。
测量技术
纳米级测量技术包括:纳米级精度的尺寸和位移的测量,纳米级表面形貌的测量。纳米级测量技术主要有两个发展方向。
一是光干涉测量技术,它是利用光的干涉条纹来提高测量的分辨率,其测量方法有:双频激光干涉测量法、光外差干涉测量法、X射线干涉测量法、F一P标准工具测量法等,可用于长度和位移的精确测量,也可用于表面显微形貌的测量。
二是扫描探针显微测量技术(STM),其基本原理是基于量子力学的隧道效应,它的原理是用极尖的探针(或类似的方法)对被测表面进行扫描(探针和被测表面实际并不接触),借助纳米级的三维位移定位控制系统测出该表面的三维微观立体形貌。主要用于测量表面的微观形貌和尺寸。
用这原理的测量方法有:扫描隧道显微镜(STM)、原子显微镜(AFM)等。
衰层物理力学性能的检测
各种材料的极薄表层的物理、化学、力学性能和材料内部的性能常有很大差异。而正是这极薄的表面材料在摩擦磨损、物理、化学、机械行为中起着主导作用。反映在现在“信息时代”的新型“智能型”材料的出现,如计算机磁盘、光盘等,要求表层小但有优良的电、磁、光性能,而且要求有良好的润滑性、摩擦小、耐磨损、抗化学腐蚀、组织稳定和优良的力学性能。因此,世界各国都非常重视材料的纳米级表层的物理、化学、机械性能及其检测方法的研究。纳米级表层物理力学性能的检测方法主要是表层微力学探针检侧法,它是用纳米压痕的原理检测其力学性能的。其基本原理是利用金刚石针尖用极小的力在试件表面压出纳米级或微米级压痕,根据压痕的大小测出试件表层的显徽力学性能,即连续记录探针针尖加载逐步压入和卸载逐步退出试件表层的全过程的压痕深度变化。因其中包含试件表层的弹性交形,塑性变形、姗变、变形速率等多种信息,通过这些信息测出表层材料的多项力学性能。
材料技术
一、纳米结晶材料(nanocrystalline materials)
当物质的微结构微小化时,表面原子与内部材料原子的个数比例显著上升,界面之原子行为对物质性质便有决定性影响。例如纳米金属结晶颗粒,展现出较佳之强度、硬度、磁特性、表面催化性等;而具纳米结晶之陶瓷材料相较于一般陶瓷材料,则具较高之延展性、较不易脆裂之特性。
二、纳米粉体(nanoparticles)
纳米粉体是纳米材料中种类最繁多且应用最广泛之一类。最常见的陶瓷纳米粉体(ceramic nanoparticles)可再分为两类: 金属氧化物如TiO2、ZnO等;硅酸盐类,通常为纳米尺度的黏土薄片。它们的应用包括:
(一)复合材料:纳米粉体最大之应用之一,在于纳米高分子复合材料之开发。由于无机分散相表面积与高分子间之作用力,使复合材料的刚性大幅提升,透气性、热膨胀性下降,耐化学腐蚀,及保有透明性等的优点,可广泛应用于一般民生工业,如家电器材、汽车零组件、输送导管等耐磨结构材料上;在包装材料上的应用,如保鲜膜、饮料瓶,则可利用其耐热性、高阻气性及透明等优点。Caly/Nylon复合材料,由于分散均匀,只要添加3%~4%,即可将Nylon的熔点从70℃提升至150℃,且加工性非常良好。
(二)涂布:纳米粉体涂布具增强表面硬度、抗磨、透明等特性,已应用于建材及太阳眼镜镜片上,Kodak正发展以纳米粉体涂布制造防刮之X射线底片。此外,亦有利用纳米粉体涂布光学、耐腐蚀、绝热特性的应用开发来源:https://wzwebi.com/cshi/202501-972.html。磁性纳米粉体涂布则可应用于资料储存方面。 来源:https://wzwebi.com/cshi/202501-440.html
(三)医学与药物:经表面修饰之纳米粉体可应用于药物输送、纳米银微粒具有抗菌功效、氧化锌则具杀霉作用。TiO2与ZnO对UV吸收有相当好之功效,可应用于防晒油等美容产品。
(四)其他:纳米粉体的高表面积,可利用工业上的催化反应;用于燃料电池上,可增加其反应速率,提高效能来源:https://wzwebi.com/cshi/202501-317.html。此外,纳米颜料的开发、使用金属纳米粉体印制电子电路、及磁性纳米粉体于半导体与医学核磁共振影像上的使用,均为纳米粉体的应用范围。
三、纳米孔隙材料(nanoporous materials)
此类材料指孔隙尺寸小于100纳米的孔隙材料,包括自然界中早已存在的生物膜与沸石,其高表面积(通常高达约102 m2 /g),使之具高催化及吸附效应。纳米孔隙材料可由溶胶-凝胶法、微影蚀刻、离子束等方法制得;纳米孔隙薄膜经镀膜处理,可得纳米细管结构。
纳米孔隙材料可用开发改良催化剂,应用于石化工业等。利用孔隙结构,在薄膜过滤系统纯化/分离、药物输送植入装置、基因定序、医学检测等,纳米孔隙材料均有相当大的应用潜能。气胶为质轻的良好绝热材料;纳米孔隙薄膜可作为半导体业中低介电材料;纳米多孔硅特殊的发光性质,可作为固态镭射的材料;纳米多孔碳则具高电容特性,可应用于如手提电脑、移动电话,乃至电动车等电池的开发。
四、纳米纤维与纳米缆线(nanofibers, nanowires) 来源:https://yz66.net/cshi/202501-2195.html
纳米纤维在此指相对较短的纤维,包括碳纤丝(carbon fibrils)、人造高分子纤维、及氧化铝纤维等;电纺(electrospinning)是制造人造高分子纳米纤维之方法,可结合纳米微粒或纳米管等材料于纤维中。工研院化学工业研究所正开发之电纺纳米纤维,其尺度约为人发的1/100。
纳米缆线则倾向为无机材质,包括金属、半导体(如硅、锗),及一些有机高分子,主要应用于电子工程。其制造主要有三个方式:
(一)微影蚀刻或拓印。
(二)化学成长。
(三)自组装成长。
纳米缆线的电子传递行为并不遵循古典电学,例如其电阻为一定值并不随长度改变;应用于建构复杂之电路系统时,须挑战的困难点在于缆线间的连接性。
纳米纤维可用于复合材料与表面涂布,达补强作用。Hyperion Catalysis International正开发利用纳米碳纤丝,制造导电塑胶及薄膜,可应用在汽车的静电涂料或电器设备的静电消除;与传统导电塑胶材料比较,达同样导电效果所需添加之碳纤丝量较低,且材料表面亦较平滑。
电纺纳米纤维具强度提升与高表面积等特性,适合作为纳米粉体于催化应用上之反应床。纳米纤维可制成抗化学品、防水透气、防污等特殊性能布料,在纺织服装业上有广大的市场;Nano-Tex公司已有开发之商业化产品问世。纳米纤维可用为过滤材料及医学组织工程之支架材料;在药物输送的媒介、传感器、纳米电机等领域,亦具应用潜力。
五、纳米碳管
纳米碳管(carbon nanotube,CNT)是在1991年由日本NEC公司Sumio Iijima,在以穿透式电子显微镜观察碳的团簇(cluster)时意外发现,为石墨平面卷曲而成之管状材料,有单层(single-walled)与多重层(multi-walled)两种结构。纳米碳管的制程方式包括电弧放电、镭射蒸发/剥离、化学气相沉积法、气相成长、电解及火焰生成法等。纳米碳管具许多特殊性质,如高张力强度(tensile strength ,阅100Gpa)、优良的热导性、及室温超导性,其导电性则随不同的卷曲方式而变,可为纳米导线或是纳米半导体;研究并显示纳米碳管可吸附氢气,唯其机制与吸附效能目前仍无定论。
纳米生物学
鞭毛马达
纳米生物学是以纳米尺度研究细胞内部各种细胞器的结构和功能。研究细胞内部,细胞内外之间以及整个生物体的物质、能量和信息交换。纳米生物学的研究集中在下列方面。
一、遗传物质DNA的研究
这方面的研究在形貌观察、特性研究和基因改造三个方面有不少进展。
二、脑功能的研究
工作目标是弄清人类的记忆、思维,语言和学习这些高级神经功能和人脑的信息处理功能。
三、仿生学的研究
这是纳米生物学的热门研究内容。是纳米技术中有希望获得突破性巨大成果的部分。世界上最小的马达是一种生物马达——鞭毛马达。能像螺旋桨那样旋转驱动鞭毛旋转。该马达通常由10种以上的蛋白质群体组成,其构造如同人工马达。由相当的定子、转子、轴承、万向接头等组成来源:https://wzwebi.com/cshi/202501-671.html。它的直径只有30nm,转速可以高达15r/min,可在1μs内进行右转或左转的相互切换。利用外部电场可实现加速或减速。转动的动力源,是细菌内支撑马达的薄膜内外的氮氧离子浓度差。实验证明。细菌体内外的电位差也可驱动鞭毛马达。现在人们正在探索设计一种能用电位差驭动的人工鞭毛马达驱动器。
纳米技术 - 潜在危害来源:https://wzwebi.com/cshi/202501-441.html
纳米技术的潜在危害可以广义地划分为下面几个方面:
健康问题
纳米颗粒进入人体有四种途径:吸入,吞咽,从皮肤吸收或在医疗过程中被有意地注入(或由植入体释放)。一旦进入人体,它们具有高度的可移动性。在一些个例中,它们甚至能穿越血脑屏障。
纳米粒子在器官中的行为仍然是需要研究的一个大课题。基本上,纳米颗粒的行为取决于它们的大小,形状和同周围组织的相互作用活动性。它们可能引起噬菌细胞(吞咽并消灭外来物质的细胞)的“过载”,从而引发防御性的发烧和降低机体免疫力。它们可能因为无法降解或降解缓慢,而在器官里集聚。还有一个顾虑是它们同人体中一些生物过程发生反应的潜在危险。由于极大的表面积,暴露在组织和液体中的纳米粒子会立即吸附它们遇到的大分子。这样会影响到例如酶和其他蛋白的调整机制。
环境问题
主要的担心在纳米颗粒可造成的危害上。
社会风险
纳米技术的使用也存在社会学风险。在仪器的层面,也包括在军事领域使用纳米技术的可能性。
纳米技术的用途如下: 一、衣: 1.在纺织和化纤制品中添加纳米微粒,可除味杀菌; 2.在化纤布中加入少量金属纳米微粒,可消除静电现象。 二、食: 1.利用纳米材料,冰箱可以抗菌; 2.使用纳米材料制作无菌餐具、无菌食品包装用品; 3.利用纳米粉末,使废水彻底变清水,完全达到饮用标准; 4.制作纳米食品,色香味俱全,有益健康。 三、住: 1.纳米技术的运用,使墙面涂料的耐洗刷性提高10倍; 2.玻璃和瓷砖表面加涂纳米薄层,可制成自洁玻璃和自洁瓷砖,无需擦洗; 3.含有纳米微粒的建筑材料可吸收对人体有害的紫外线。 四、行: 1.纳米材料可以提高和改进交通工具的性能指标; 2.纳米陶瓷有望成为汽车、轮船、飞机等发动机部件的理想材料,极大提高发动机效率、工作寿命和可靠性; 3.纳米卫星可随时向驾驶人员提供交通信息,帮助其安全驾驶。
查看全部27个回答
纳米涂层的价格是多少?纳米涂层的价格防静电防污,疏水疏油材料,高科技高品质更专业
纳米涂层的价格,疏水疏油涂层,超亲水防污涂层自清洁涂层,易清洁涂层,防结冰涂层...专业表面涂层处理解决方案提供者。
广州碧然环保有限公司广告?
纳米涂层 北京信为兢创科技有限公司 专业氟化学
纳米涂层用于手机模组 IC 电容器 传感器等精密电子部件的防潮防水防腐蚀。纳米涂层疏水疏油,厚度1um,高柔韧性耐弯折,室温1min固化成膜。
北京信为兢创科技有..广告?
相关问题全部来源:https://wzwebi.com/cshi/202501-304.html
生活中哪些东西运用了纳米技术?
29 浏览15862020-03-26
纳米材料在现实生活中已有一些什么应用
目前是纳米碳酸钙主导纳米粉体市场。纳米碳酸钙由于原料廉价、生产技术相对成熟,目前已经成为纳米粉体材料市场主导产品,占据了纳米新材料总体市场规模的约30%。纳米氧化锌、纳米氧化硅、纳米氧化钛等产品制备工艺和市场应用也逐步走向成熟,初步实现了产业化生产,目前已成为纳米粉体市场的重要组成部分。
1 浏览269
生活中有哪些纳米技术?
纳米技术应用前景十分广阔,经济效益十分巨大,美国权威机构预测,2010年纳米技术市场估计达到14400亿美元,纳米技术未来的应用将远远超过计算机工业。纳米复合、塑胶、橡胶和纤维的改性,纳米功能涂层材料的设计和应用,将给传统产生和产品注入新的高科技含量。专家指出,纺织、建材、化工、石油、汽车、军事装备、通讯设备等领域,将免不了一场因纳米而引发的“材料革命”我国以纳米材料和纳米技术注册的公司有近100个,建立了10多条纳米材料和纳米技术的生产线。纳米布料、服装已批量生产,象电脑工作装、无静电服、防紫外线服等纳米服装都已问世。
3 浏览102020-04-09
生活中有什么是纳米技术?
纳米技术在生活中的应用体现在衣食住行。 1、衣 在纺织和化纤制品中添加纳米微粒,可以除味杀菌。化纤布虽然结实,但有烦人的静电现象,加入少量金属纳米微粒就可消除静电现象。 2、食 利用纳米材料,冰箱可以抗菌。纳米材料做的无菌餐具、无菌食品包装用品已经面世。利用纳米粉末,可以使废水彻底变清水,完全达到饮用标准。纳米食品色香味俱全,还有益健康。 3、住 纳米技术的运用,使墙面涂料的耐洗刷性可提高10倍。玻璃和瓷砖表面涂上纳米薄层,可以制成自洁玻璃和自洁瓷砖,根本不用擦洗。含有纳米微粒的建筑材料,还可以吸收对人体有害的紫外线。 4、行 纳米材料可以提高和改进交通工具的性能指标。纳米陶瓷有望成为汽车、轮船、飞机等发动机部件的理想材料,能大大提高发动机效率、工作寿命和可靠性。纳米卫星可以随时向驾驶人员提供交通信息,帮助其安全驾驶。
扩展资料:
纳米材料是80年代中期发展起来的新型材料,它比负氧离子先进50年。由于纳米微粒(1-100nm)的独特结构状态,使其产生了小尺寸效应、量子尺寸效应、表面效应、宏观量子隧道效应等,从而使纳米材料表现出光、电、热、磁、吸收、反射、吸附、催化以及生物活性等特殊功能。 纳米材料具有许多独特功能,而且用量少,但却赋予材料意想不到的高性能,附加值甚高。纳米复合高分子材料、纳米抗菌、保鲜、除臭材料等等,由于纳米材料的尺寸小,比血液中的红血球小一千多倍,比细菌小几十倍,气体通过其扩散的速度比常规材料快几千倍。纳米颗粒与生物细胞膜的化物作用很强,极易进入细胞内。92 浏览2342020-03-24
生活中有哪些纳米材料?
在现实生活中,纳米技术有着广泛的用途。 1、超微传感器传感器是纳米微粒最有前途的应用领域之一。纳米微粒的特点如大比;表面积、高活性特异物性、极微小性等与传:感器所要求的多功能、微型化、高速化相互对应。另外,作为传感器材料,还要求功能广、灵敏度高、响应速度快、检测范围宽、选择性好、耐负荷性高、稳定可靠,纳米微粒能较好地符合上述要求。 2、催化剂在化学工业中,将纳米微粒用做催化剂,是纳米材料大显身手的又一方面。如超细硼粉、高铬酸铵粉可以作为炸药有效催化剂;超细的铂粉、碳化钨粉是高效的氢化催化剂;超细银粉可以作为乙烯氧化的催化剂;超细的镍粉、银粉的轻烧结体作为化学电池、燃料电池和光化学电池中的电极可以增大与液相或气体之间的接触面积,增加电池效率,有利于小型化。 超细微粒的轻烧结体可以生成微孔过滤器,作为吸附氢气的储藏材料。还可作为陶瓷的着色剂,用于工艺美术中。 3、医学、生物工程尺寸小于10纳米的超细微粒可以在血管中自由移动,在目前的微型机器人世界里,最小的可以注入人的血管,它一步行走的距离仅为5纳米,机器人进行全身健康检查和治疗,包括疏通脑血管中的血栓,清除心脏动脉脂肪沉积物等,还可以吞噬病毒,杀死癌细胞。这些神话般的成果,可以使人类在肉眼看不见的微观世界里享用那取之不尽的财富。 4、电子工业量子元件主要是通过控制电子波动的相位来进行工作,因此它能够实现更高的响应速度和更低的电力消耗。另外,量子元件还可以使元件的体积大大缩小,使电路大为简化,因此,量子元件的兴起将导致一场电子技术的革命。目前,风靡全球的因特网,如果把利用纳米技术制造的微型机电系统设置在网络中,它们就会互相传递信息,并执行处理任务。不久的将来,它将操纵~飞机、开展健康监测,并为地震、飞机零 件故障和桥梁裂缝等发出警报。那时,因特网亦相形见绌。 5、“会呼吸”的纳米面料。 纳米是一种基于纳米材料的化学处理技术,纳米布料是用一种特殊的物理和化学处理技术将纳米原料融入面料纤维中,从而在普通面料上形成保护层,增加和提升面料的防水、 防油、防污、透气、抑菌、环保、固色等功能,可广泛应用于服装、家用纺织品以及工业用纺织品。来源:https://wzwebi.com/cshi/202501-295.html
关于“研究纳米技术的意义”这个话题的介绍,今天小编就给大家分享完了,如果对你有所帮助请保持对本站的关注!