网上有关“研究称黑洞可能从宇宙本身的膨胀中获得质量”话题很是火热,小编也是针对研究称黑洞可能从宇宙本身的膨胀中获得质量寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。来源:https://wzwebi.com/cshi/202501-735.html

在过去6年中,引力波观测站一直在探测黑洞的合并,验证了爱因斯坦引力理论的一个重要预测。但是有一个问题--许多这些黑洞都出乎意料地大。现在,来自夏威夷大学马诺阿分校、芝加哥大学和密歇根大学安娜堡分校的 一个研究小组为这个问题提出了一个新的解决方案:黑洞随着宇宙的膨胀而增长。

自从2015年激光干涉引力波天文台(LIGO)首次观测到合并的黑洞以来,天文学家们一再对它们的巨大质量感到惊讶。尽管黑洞不发光,但通过它们发射的引力波--爱因斯坦的广义相对论所预测的时空结构中的涟漪--来观察黑洞合并。物理学家最初预计,黑洞的质量将小于太阳的40倍,因为合并的黑洞来自于大质量的恒星,如果它们变得太大,就无法维持自己。来源:https://wzwebi.com/cshi/202501-779.html

然而,LIGO和Virgo天文台已经发现了许多质量大于50个太阳的黑洞,其中一些黑洞的质量达到了100个太阳。许多形成方案被提出来以产生如此大的黑洞,但是没有一个方案能够解释迄今为止观察到的黑洞合并的多样性,而且对于哪种形成方案的组合在物理上是可行的也没有一致意见。这项发表在《天体物理学杂志》上的新研究首次表明,大黑洞和小黑洞的质量都可以通过单一途径产生,其中黑洞从宇宙本身的膨胀中获得质量。

天文学家通常在一个不能膨胀的宇宙内建立黑洞模型。夏威夷大学马诺阿分校物理和天文学系教授 Kevin Croker说:“这是一个简化爱因斯坦方程的假设,因为一个不增长的宇宙需要跟踪的东西少得多。但有一个权衡:预测可能只在有限的时间内是合理的来源:https://wzwebi.com/cshi/202501-335.html。”

因为LIGO-Virgo所探测到的单个事件只持续几秒钟,在分析任何单一事件时,这种简化是合理的。 但是这些同样的合并有可能是数十亿年的过程。 在两个黑洞的形成和它们最终合并之间的时间里,宇宙在深刻地成长。如果仔细考虑爱因斯坦理论中更微妙的方面,就会出现一种惊人的可能性:黑洞的质量可能与宇宙同步增长,这种现象被Croker和他的团队称为“宇宙学耦合”。来源:https://wzwebi.com/cshi/202501-340.html

宇宙学耦合物质的最著名的例子是光本身,它随着宇宙的增长而失去能量。“我们认为要考虑相反的效果,”研究的共同作者、夏威夷大学马诺阿分校物理和天文学教授Duncan Farrah说。 “如果黑洞是宇宙耦合的,并且在不需要消耗其他恒星或气体的情况下获得能量,LIGO-Virgo会观察到什么来源:https://wzwebi.com/cshi/202501-714.html?”

为了研究这一假设,研究人员模拟了数百万对大型恒星的诞生、生活和死亡。任何两颗恒星都死亡形成黑洞的配对,然后与宇宙的大小联系起来,从它们死亡的时间开始来源:https://wzwebi.com/cshi/202501-526.html。随着宇宙的继续增长,这些黑洞的质量也随着它们的螺旋式上升而增长来源:https://wzwebi.com/cshi/202501-561.html。其结果是,当黑洞合并时,不仅质量更大,而且合并的次数也更多。当研究人员将LIGO-Virgo的数据与他们的预测相比较时,他们达成了合理的一致。“我不得不说我一开始不知道该怎么想,”研究的共同作者、密歇根大学教授Gregory Tarlé说。“这是一个如此简单的想法,我很惊讶它的效果这么好。”

根据研究人员的说法,这个新模型很重要,因为它不需要对我们目前对恒星形成、演化或死亡的理解做任何改变。新模型和我们目前的数据之间的一致性来自于简单地承认现实的黑洞不存在于一个静态的宇宙中。 然而,研究人员强调,LIGO-Virgo的大质量黑洞之谜远远没有得到解决。

“合并黑洞的许多方面并不为人所知,例如主要的形成环境和贯穿其生命的复杂物理过程,”研究的共同作者、美国宇航局哈勃研究员Michael Zevin博士说。“虽然我们使用了一个模拟的恒星群,反映了我们目前拥有的数据,但仍有很大的回旋余地。我们可以看到,宇宙学耦合是一个有用的想法,但我们还不能测量这种耦合的强度。”

研究的共同作者、夏威夷大学马诺阿分校物理和天文学教授Kurtis Nishimura对这一新想法的未来测试表示乐观。“随着引力波观测站在未来十年继续提高灵敏度,数据数量和质量的增加将使新的分析技术成为可能来源:https://www.yz66.net/xwzx/202501-2425.html。这将很快被测量出来。”

科学家开创出一种改进引力波探测器的新技术

广义相对论预言下的引力波来自于宇宙间带有强引力场的天文学或宇宙学波源,近半个世纪以来的天体物理学研究表明,引力辐射在天体系统中出现的场合非常丰富。这些可期待的波源包括银河系内的双星系统(白矮星、中子星或黑洞等致密星体组成的双星),河外星系内的超大质量黑洞的合并,脉冲星的自转,超新星的引力坍缩,大爆炸留下的背景辐射等等。引力波的观测意义不仅在于对广义相对论的直接验证,更在于它能够提供一个观测宇宙的新途径,就像观测天文学从可见光天文学扩展到全波段天文学那样极大扩展人类的视野来源:https://wzwebi.com/cshi/202501-921.html。传统的观测天文学完全依靠对电磁辐射的探测,而引力波天文学的出现则标志着观测手段已经开始超越电磁相互作用的范畴,引力波观测将揭示关于恒星、星系以及宇宙更多前所未知的信息来源:https://wzwebi.com/cshi/202501-468.html

西澳大利亚大学的物理学家跟一个国际研究团队合作开创了一项能改进引力波探测器的新技术,该探测器是科学研究人员使用的最敏感的仪器之一。 这项新技术使世界上现有的引力波探测器能达到以前认为只有通过建造更大的探测器才能实现的灵敏度。

这篇发表在《Communications Physics》上的论文由西澳大学ARC引力波发现卓越中心(OzGrav)牵头,与ARC工程量子系统卓越中心、哥本哈根的尼尔斯-玻尔研究所和帕萨迪纳的加州理工学院合作。

来自西澳大学物理系的名誉教授David Blari指出,这项技术将被称为声子的声音振动量子粒子跟激光的光子合并在一起,从而创造出一种新型的放大技术,在这种技术中,合并的粒子来回循环数十亿次而不丢失。

Blair表示:“一百多年前,爱因斯坦证明了光是以小能量包的形式出现的,我们现在称之为光子。”

光子最复杂的应用之一是引力波探测器,它允许物理学家观察由宇宙碰撞引起的空间和时间的涟漪。

“在爱因斯坦预测光子两年后,他提出热和声音也是以能量包的形式出现,我们现在称之为声子,”Blair说道,“声子以其量子形式单独驾驭要棘手得多,因为它们通常被称为热背景的大量随机声子所淹没。”

据悉,Blair曾因其对首次探测引力波的贡献而被授予2020年著名的总理科学奖。

论文的第一作者Michael Page博士表示,诀窍是将声子和光子结合在一起,使广泛的引力波频率可以同时放大。

“这项新突破将让物理学家观察到已知宇宙中最极端和最集中的物质,因为它坍缩成一个黑洞,当两颗中子星相撞时就会发生这种情况,”Page博士说道来源:https://wzwebi.com/cshi/202501-718.html

Blair表示,这些波形听起来就像一个简短的尖叫声,由于其音调太高,所以目前的探测器无法听到。

“我们的技术将使这些波形清晰可闻,并且还将揭示中子星中的中子在这种极端状态下是否会被分裂成被称为夸克的成分。看到核物质变成黑洞最令人兴奋的是,这个过程就像创造宇宙的大爆炸的反面。观察这种情况的发生就像观看一部向后播放的大爆炸**来源:https://wzwebi.com/cshi/202501-773.html。”

Blair表示,虽然该技术并不代表改进引力波探测器的即时解决方案,但它提供了一条低成本的改进途径来源:https://wzwebi.com/cshi/202501-904.html

关于“研究称黑洞可能从宇宙本身的膨胀中获得质量”这个话题的介绍,今天小编就给大家分享完了,如果对你有所帮助请保持对本站的关注!