网上有关“牛顿发现万有引力的故事(主要写经过)”话题很是火热,小编也是针对牛顿发现万有引力的故事(主要写经过)寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。

牛顿的一则著名的故事称,牛顿在受到一颗从树上掉落的苹果启发后,阐示出了他的万有引力定律。漫画作品更认为,掉落的苹果正好砸中了牛顿的脑门,它的碰撞让他不知何故地明白了引力。约翰·康杜特,牛顿在皇家造币厂时的助理及牛顿外甥女的丈夫,在他有关牛顿生活的著述中提到了这件事:

1666年,他再次离开了剑桥大学,回到了住在林肯郡的母亲身边。当他在一座花园中沉思散步时,他突然想到重力(它的作用让一颗苹果从树上掉到地上)不会仅局限于地球周围的有限距离里,而会延伸到比平常认为的更远的地方。

他自言自语道,为什么不和月亮一样高呢——如果这样,一定会对她的运动产生影响——也许可以让她保持在她的轨道上,于是他开始计算那样的假设会产生怎样的效果。

问题不在于引力是否存在,而在于它是否能从地球延伸到如此远,还能够成为保持月球在轨道运行的力。牛顿发现,如果让该力随距离的平方反比而减少,所计算出的月球轨道周期能与真实情况非常好地吻合。

他猜想同样的力也导致了其他的轨道运动,并因此将之命名为“万有引力”。被称为牛顿苹果树后代的一颗苹果树,发现于剑桥大学植物园

同时代的作家威廉·斯蒂克利牧师在他的《艾萨克·牛顿爵士生平回忆录》中记录了1726年4月15日他在肯辛顿与牛顿的一次谈话,在该次谈话中,牛顿回忆了“从前,引力的概念进入了他的脑海。

在他正在沉思时,苹果的下落引起了他的思考。为什么苹果总会垂直地落在地上,他心中想到。为什么就不能走侧面或者向上升,却永远地朝向地球的中心。”

相似的说法还出现在伏尔泰的著述《Essay on Epic Poetry》(1727)中:“艾萨克·牛顿爵士在他的花园里散步,首次想到了他的引力体系,接着便看见一颗苹果从树上掉下。”

这些描述都可能夸大了牛顿本人自己叙述的在家(伍尔索普庄园)里靠窗坐着时,看见苹果从树上掉落的故事。

万有引力定律

万有引力定律是由艾萨克·牛顿称之为归纳推理的经验观察得出的一般物理规律。它是经典力学的一部分,是在1687年于《自然哲学的数学原理》中首次发表的,并于1687年7月5日首次出版。当牛顿的书在1686年被提交给英国皇家学会时,罗伯特·胡克宣称牛顿从他那里得到了距离平方反比律。

此定律若按照现代语文,明示了:每一点质量都是通过指向沿着两点相交线的力量来吸引每一个其它点的质量。

力与两个质量的乘积成正比,与它们之间的距离平方成反比。关于牛顿所明示质量之间万有引力理论的第一个实验,是英国科学家亨利·卡文迪什于1798年进行的卡文迪许实验。这个实验发生在牛顿原理出版111年之后,也是在他去世大约71年之后。

牛顿的引力定律类似于库仑定律,用来计算两个带电体之间产生的电力的大小。两者都是平方反比定律,其中作用力与物体之间的距离平方成反比。库仑定律是用两个电荷来代替质量的乘积,用静电常数代替引力常数。

来源:https://www.wzwebi.com/cshi/202501-1036.html

艾萨克·牛顿(Isaac Newton)是英国伟大的数学家、物理学家、天文学家和自然哲学家,其研究领域包括了物理学、数学、天文学、神学、自然哲学和炼金术。

来源:https://wzwebi.com/cshi/202501-372.html

牛顿的主要贡献有发明了微积分,发现了万有引力定律和经典力学,设计并实际制造了第一架反射式望远镜等等,被誉为人类历史上最伟大,最有影响力的科学家。

为了纪念牛顿在经典力学方面的杰出成就,“牛顿”后来成为衡量力的大小的物理单位。

主要贡献

二项式定理

在一六六五年,刚好二十二岁的牛顿发现了二项式定理,这对于微积分的充分发展是必不可少的一步。

二项式定理在组合理论、开高次方、高阶等差数列求和,以及差分法中有广泛的应用。

推广形式

二项式级数展开式是研究级数论、函数论、数学分析、方程理论的有力工具。

在今天我们会发觉这个方法只适用于n是正整数,当n是正整数1,2,3,....... ,级数终止在正好是n+1项。

如果n不是正整数,级数就不会终止,这个方法就不适用了。

但是我们要知道那时,莱布尼茨在一六九四年才引进函数这个词,在微积分早期阶段,研究超越函数时用它们的级来处理是所用方法中最有成效的。

创建微积分

牛顿在数学上最卓越的成就是创建微积分。

他超越前人的功绩在于,他将古希腊以来求解无限小问题的各种特殊技巧统一为两类普遍的算法--微分和积分,并确立了这两类运算的互逆关系,如:面积计算可以看作求切线的逆过程。

那时莱布尼兹刚好亦提出微积分研究报告,更因此引发了一场微积分发明专利权的争论,直到莱氏去世才停息。

后世认为牛顿提出微积分概念虽然更早,但莱布尼兹的方法更加完善。

微积分方法上,牛顿所作出的极端重要的贡献是,他不但清楚地看到,而且大胆地运用了代数所提供的大大优越于几何的方法论。

他以代数方法取代了卡瓦列里、格雷哥里、惠更斯和巴罗的几何方法,完成了积分的代数化。

从此,数学逐渐从感觉的学科转向思维的学科。

微积分产生的初期,由于还没有建立起巩固的理论基础,被有些喜爱思考的人研究。

更因此而引发了著名的第二次数学危机。

这个问题直到十九世纪极限理论建立,才得到解决。

方程论与变分法

牛顿在代数方面也作出了经典的贡献,他的《广义算术》大大推动了方程论。

他发现实多项式的虚根必定成双出现,求多项式根的上界的规则,他以多项式的系数表示多项式的根n次幂之和公式,给出实多项式虚根个数的限制的笛卡儿符号规则的一个推广。

牛顿在还设计了求数值方程的实根近似值的对数和超越方程都适用的一种方法,该方法的修正,现称为牛顿方法。

牛顿在力学领域也有伟大的发现,这是说明物体运动的科学。

牛顿

第—运动定律是伽利略发现的。

这个定律阐明,如果物体处于静止或作恒速直线运动,那么只要没有外力作用,它就仍将保持静止或继续作匀速直线运动。

这个定律也称惯性定律,它描述了力的一种性质:力可以使物体由静止到运动和由运动到静止,也可以使物体由一种运动形式变化为另一种形式。

此被称为牛顿第一定律。

力学中最重要的问题是物体在类似情况下如何运动。

牛顿第二定律解决了这个问题;该定律被看作是古典物理学中最重要的基本定律。

牛顿第二定律定量地描述了力能使物体的运动产生变化。

它说明速度的时间变化率(即加速度a与力F成正比,而与物体的质量里成反比,即a=F/m或F=ma;力越大,加速度也越大;质量越大,加速度就越小。

力与加速度都既有量值又有方向。

加速度由力引起,方向与力相同;如果有几个力作用在物体上,就由合力产生加速度,第二定律是最重要的,动力的所有基本方程都可由它通过微积分推导出来。

来源:https://wzwebi.com/cshi/202501-589.html

此外,牛顿根据这两个定律制定出第三定律。

牛顿第三定律指出,两个物体的相互作用总是大小相等而方向相反。

对于两个直接接触的物体,这个定律比较易于理解。

书本对子桌子向下的压力等于桌子对书本的向上的托力,即作用力等于反作用力。

引力也是如此,飞行中的飞机向上拉地球的力在数值上等于地球向下拉飞机的力。

牛顿运动定律广泛用于科学和动力学问题上。

牛顿运动定律

牛顿运动定律是艾萨克·牛顿提出了物理学的三个运动定律的总称,被誉为是经典物理学的基础。

为“牛顿第一定律(惯性定律:一切物体在不受任何外力的作用下,总保持匀速直线运动 状态或静止状态,直到有外力迫使它改变这种状态为止。

——它明确了力和运动的关系及提出了惯性的概念)”、“牛顿第二定律(物体的加速度跟物体所受的合外力F成正比,跟物体的质量成反比,加速度的方向跟合外力的方向相同。

)公式:F=kma(当m单位为kg,a单位为m/s2时,k=1)、牛顿第三定律(两个物体之间的作用力和反作用力,在同一条直线上,大小相等,方向相反。

来源:https://wzwebi.com/cshi/202501-320.html

)”

光学贡献

在牛顿以前,墨子、培根、达·芬奇等人都研究过光学现象 。

反射定律是人们很早就认识的光学定律之一。

近代科学兴起的时候,伽利略靠望远镜发现了“新宇宙”,震惊了世界。

荷兰数学家斯涅尔首先发现了光的折射定律。

笛卡尔提出了光的微粒说……

牛顿以及跟他差不多同时代的胡克、惠更斯等人,也像伽利略、笛卡尔等前辈一样,用极大的兴趣和热情对光学进行研究。

1666年,牛顿在家休假期间,得到了三棱镜,他用来进行了著名的色散试验。

一束太阳光通过三棱镜后,分解成几种颜色的光谱带,牛顿再用一块带狭缝的挡板把其他颜色的光挡住,只让一种颜色的光在通过第二个三棱镜,结果出来的只是同样颜色的光。

这样,他就发现了白光是由各种不同颜色的光组成的,这是第一大贡献。

牛顿望远镜

牛顿为了验证这个发现,设法把几种不同的单色光合成白光,并且计算出不同颜色光的折射率,精确地说明了色散现象。

揭开了物质的颜色之谜,原来物质的色彩是不同颜色的光在物体上有不同的反射率和折射率造成的。

公元1672年,牛顿把自己的研究成果发表在《皇家学会哲学杂志》上,这是他第一次公开发表的论文。

许多人研究光学是为了改进折射望远镜。

牛顿由于发现了白光的组成,认为折射望远镜透镜的色散现象是无法消除的(后来有人用具有不同折射率的玻璃组成的透镜消除了色散现象),就设计和制造了反射望远镜。

牛顿不但擅长数学计算,而且能够自己动手制造各种试验设备并且作精细实验。

为了制造望远镜,他自己设计了研磨抛光机,实验各种研磨材料。

公元1668年,他制成了第一架反射望远镜样机,这是第二大贡献。

公元1671年,牛顿把经过改进得反射望远镜献给了皇家学会,牛顿名声大震,并被选为皇家学会会员。来源:https://wzwebi.com/cshi/202501-345.html

反射望远镜的发明奠定了现代大型光学天文望远镜的基础。

来源:https://wzwebi.com/cshi/202501-572.html

同时,牛顿还进行了大量的观察实验和数学计算,比如研究惠更斯发现的冰川石的异常折射现象,胡克发现的肥皂泡的色彩现象,“牛顿环”的光学现象等等。

牛顿还提出了光的“微粒说”,认为光是由微粒形成的,并且走的是最快速的直线运动路径。

他的“微粒说”与后来惠更斯的“波动说”构成了关于光的两大基本理论。

此外,他还制作了牛顿色盘等多种光学仪器。

构筑力学大厦

牛顿是经典力学理论的集大成者。

他系统的总结了伽利略、开普勒和惠更斯等人的工作,得到了著名的万有引力定律和牛顿运动三定律。

在牛顿以前,天文学是最显赫的学科。

但是为什么行星一定按照一定规律围绕太阳运行?天文学家无法圆满解释这个问题。来源:https://wzwebi.com/cshi/202501-536.html

来源:https://wzwebi.com/cshi/202501-412.html

万有引力的发现说明,天上星体运动和地面上物体运动都受到同样的规律——力学规律的支配。

早在牛顿发现万有引力定律以前,已经有许多科学家严肃认真的考虑过这个问题。

比如开普勒就认识到,要维持行星沿椭圆轨道运动必定有一种力在起作用,他认为这种力类似磁力,就像磁石吸铁一样。

1659年,惠更斯从研究摆的运动中发现,保持物体沿圆周轨道运动需要一种向心力。

胡克等人认为是引力,并且试图推到引力和距离的关系。

1664年,胡克发现彗星靠近太阳时轨道弯曲是因为太阳引力作用的结果;1673年,惠更斯推导出向心力定律;1679年,胡克和哈雷从向心力定律和开普勒第三定律,推导出维持行星运动的万有引力和距离的平方成反比。

牛顿自己回忆,1666年前后,他在老家居住的时候已经考虑过万有引力的问题。

最有名的一个说法是:在假期里,牛顿常常在花园里小坐片刻。

有一次,象以往屡次发生的那样,一个苹果从树上掉了下来……来源:https://wzwebi.com/cshi/202501-670.html

一个苹果的偶然落地,却是人类思想史的一个转折点,它使那个坐在花园里的人的头脑开了窍,引起他的沉思:究竟是什么原因使一切物体都受到差不多总是朝向地心的吸引呢?牛顿思索着。

终于,他发现了对人类具有划时代意义的万有引力。

牛顿高明的地方就在于他解决了胡克等人没有能够解决的数学论证问题。

1679年,胡克曾经写信问牛顿,能不能根据向心力定律和引力同距离的平方成反比的定律,来证明行星沿椭圆轨道运动。

牛顿没有回答这个问题。

1685年,哈雷登门拜访牛顿时,牛顿已经发现了万有引力定律:两个物体之间有引力,引力和距离的平方成反比,和两个物体质量的乘积成正比。来源:https://wzwebi.com/cshi/202501-768.html

当时已经有了地球半径、日地距离等精确的数据可以供计算使用。

牛顿向哈雷证明地球的引力是使月亮围绕地球运动的向心力,也证明了在太阳引力作用下,行星运动符合开普勒运动三定律。

在哈雷的敦促下,1686年底,牛顿写成划时代的伟大著作《自然哲学的数学原理》一书。

来源:https://wzwebi.com/cshi/202501-771.html

皇家学会经费不足,出不了这本书,后来靠了哈雷的资助,这部科学史上最伟大的著作之一才能够在1687年出版。

牛顿在这部书中,从力学的基本概念(质量、动量、惯性、力)和基本定律(运动三定律)出发,运用他所发明的微积分这一锐利的数学工具,不但从数学上论证了万有引力定律,而且把经典力学确立为完整而严密的体系,把天体力学和地面上的物体力学统一起来,实现了物理学史上第一次大的综合。

牛顿的三大衡定

物质不灭定律,说的是物质的质量不灭;能量守恒定律,说的是物质的能量守恒;动量守恒定律。

牛顿公式

设X1表示物体与第一焦点的距离,而X2表示光像与第二焦点的距离

X1X2=f1f2来源:https://wzwebi.com/cshi/202501-1329.html

来源:https://wzwebi.com/cshi/202501-613.html

这一关系式叫做牛顿公式,其形式较1/u +1/v +1/f 简单,且对称性更显著,运用时也较方便。

关于“牛顿发现万有引力的故事(主要写经过)”这个话题的介绍,今天小编就给大家分享完了,如果对你有所帮助请保持对本站的关注!