网上有关“人类基因组中的遗传密码:解读生命信息”话题很是火热,小编也是针对人类基因组中的遗传密码:解读生命信息寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您来源:https://www.atermamicrowave.com/cshi/202412-14.html

1 .基因突变的类型

突变是指发生在遗传物质上的变异。广义上突变可以分为两类:染色体畸变和基因突变。狭义突变通常指基因突变,它是指DNA分子中发生碱基对的替换、增添和缺失,而引起的基因结构的改变,包括单个碱基改变所引起的点突变,或多个碱基的缺失、重复和插入。如果按照碱基顺序改变类型区分,突变可以分为碱基置换突变、移码突变、整码突变、染色体错误配对和不等交换4种。来源:https://www.atermamicrowave.com/xwzx/202412-135.html

(1) 碱基置换突变:由一个碱基被另一个碱基取代而造成的突变叫碱基置换突变。例如在 DNA 分子中的 GC 碱基对由 CG 或 AT 或 TA 所代替, AT 碱基对由 TA 或 GC 或 CG 所代替。碱基替换过程只改变被替换碱基的那个密码子,也就是说每一次碱基替换只改变一个密码子,不会涉及到其他的密码子。根据碱基置换对多肽链中氨基酸顺序的影响,可以将突变分为同义突变、错义突变、无义突变和终止码突变4种类型。

① 同义突变:由于密码子具有简并性,因此,单个碱基置换可能只改变mRNA上的特定密码子,但不影响它所编码的氨基酸。例如,DNA分子模板链中GCG的第三位G被A取代而成GCA,则mRNA中相应的密码子CGC就被转录为CGU,由于CGC和CGU都是精氨酸的密码子,因而新形成的多肽链没有氨基酸顺序和数目的变化,这种突变称为同义突变。

② 错义突变:是指DNA分子中的碱基置换不仅改变了mRNA上特定的遗传密码,而且导致新合成的多肽链中一个氨基酸被另一氨基酸所取代这种情况称为错义突变。错义突变往往导致产生功能异常的蛋白质。

③ 无义突变:当单个碱基置换导致出现终止密码(UAG、UAA、UGA)时,多肽链将提前终止合成,所产生的蛋白质大都失去活性或丧失正常功能,此种突变称为无义突变。例如,DNA分子模板链中ATG的G被T代替时,相应的mRNA上的密码子便从UAC变成终止信号UAA,因此翻译到此为止,使肽链缩短。

④ 终止密码突变:当DNA分子中一个终止密码发生突变成为编码氨基酸的密码子时,多肽链的合成将不能正常终止,肽链将继续延长直至遇到下一个终止密码子,因而形成了延长的异常肽链,这种突变称为终止密码突变,属于一类延长突变。

此外还有抑制基因突变。如果基因内部不同位置上的不同碱基分别发生突变,使其中一次突变抑制了另一次突变的遗传效应,这种突变称为抑制基因突变。

(2)移码突变

移码突变是指DNA链上插入或缺失1个、2个甚至多个碱基(但非3个碱基可3的整数倍的碱基),导致在插入或缺失碱基部位以后的密码子顺序和组成发生相应改变。由于原来的密码子移位,终止密码子常常推后或提前出现,结果造成新合成的肽链延长或缩短。

(3)整码突变:如果在DNA链的密码子之间插入或缺失一个或几个密码子,则合成的肽链将增加或减少一个或几个氨基酸,但敫或缺失部位的前后氨基酸顺序不变。这种突变黍为整码突变,也称密码子插入或缺失。

2 .诱发基因突变的因素及其作用机理

(1)物理诱变因素:各种射线,如X射线、 γ 射线、 α 射线、 β 射线和中子等都能诱发基因突变,当这线辐射作用于生物体时,首先从细胞中各种物质的原子或分子的外层击出电子,引起这些物质的原子或分子的电离和激发。当细胞内的染色体或DNA分子在射线的作用下产生电离和激发时,它们的结构就会改变,这是电离辐射的直接作用。电离辐射有累加效应,小剂量长期照射与大剂量短期照射的诱变效果相同。

(2)化学诱变因素:一些化学物质和辐射一样能够引起生物体发生基因突变。有三种类型:一类是能够改变DNA化学结构的诱变剂,如亚硝酸和烷化剂;一类是碱基类似物,它们的分子结构与DNA分子中的碱基十分相似。在DNA分子复制时,这些碱基类似物能够以假乱真,作为DNA的组成成分加入到DNA分子中,从而引起基因突变。常见的碱基类似物有5-溴尿嘧啶、2-氨基嘌呤等;还有一类是吖啶类化合物,它们可以插入DNA分子结构中,使DNA分子在复制或转录时出现 差错而导致突变。

(3)病毒诱变因素:某些病毒进入宿主细胞后能够干扰宿主细胞正常的DNA复制也会引起基因突变。

3 .基因突变的特点和意义

(1)普遍性 即生物界中,基因突变是普遍存在的。基因的多样性导致了自然界中的生物的种类、结构、性状具有多样性,而基因在一定条件下就有可能发生突变。其中自然条件下发生的基因突变称为自然突变,人为条件下诱发产生的基因突变叫做诱发突变来源:https://www.atermamicrowave.com/cshi/202412-25.html

(2)随机性 因为基因突变发生在DNA复制过程中,而绝大多数生物都具有DNA,在生物个体发育过程中,随时都进行着细胞分裂,并且进行着DNA的复制,只要条件改变,就随时都有可能发生突变。基因突变如果发生在体细胞中一般不能传递给后代,如果发生在生殖细胞中,则可以通过受精作用直接传递给后代。

(3)不定向性 同一个基因可以向不同方向发生突变,产生一系列不同的等位基因,即产生复等位基因。突变时也可以再一次突变回到原来那个基因。

(4)低频性 因为生物体内的DNA分子结构具有相对的稳定性,且DNA复制时一般都会严格遵循碱基互补配对原则,因此,发生基因突变的机率是很低的。

(5)多害少利性 因为任何一种生物都是经过长期自然选择的产物,它们与环境条件已经取得了高度的协调关系;如果发生基因突变,就有可能破坏这种关系,因而对生物的生存往往是有害的。

意义:基因突变对生物进化具有重要意义,它是生物变异的根本来源,为生物进化提供了最新的原材料。因为没有基因突变,就不会产生等位基因,就不可能发生基因重组,而生物进化的内因是遗传与变异。

4.基因重组及意义

从广义上讲,任何造成基因型变化的基因交流过程,都叫做基因重组。而狭义的基因重组仅指涉及DNA分子内断裂-复合的基因交流。真核生物在减数分裂时,通过非同源染色体的自由组合形成各种不同的配子,雌雄配子结合产生基因型各不相同的后代,这种重组过程虽然也导致基因型的变化,但是由于它不涉及DNA分子内的断裂-复合,因此,不包括在狭义的基因重组的范围之内。

意义:是生物多样性的重要原因之一;为生物变异提供极其丰富的来源,对生物进化具有重要意义。

5.基因重组与基因突变的比较

基因突变 基因重组 本质

基因的分子结构发生改变,产生了新基因,出现了新性状 不同基因的重新组合,不产生新基因,而是产生新基因型,使之性状重新组合 发生时间及原因 细胞分裂间期DNA分子复制时,由于 外界理化因素或自身生理因素引起的碱基对的替换、增添或缺失 减数第一次分裂过程中,同源染色体的非姐妹染色单体间交叉互换,以及非同源染色体上基因自由组合 条件 外界条件的剧变和内部因素的相互作用 不同个体之间的杂交,有性生殖过程中进行减数分裂形成生殖细胞 意义 生物变异的根本来源,是生物进化的原材料 是生物变异的重要因素,通过杂交育种性状的重组,可培育出新的优良品种 发生可能 突变频率低,但普遍存在 有性生殖中非常普遍 6.染色体结构的变异及其类型 染色体结构变异包括缺失、重复、倒位和易位四种类型。 缺失 缺失是指染色体上某一区段及其带有的基因一起丢失, 中间缺失 顶端缺失。缺失引起的遗传效应随着缺失片段大小和细胞所处发育时期的不同而不同。在个体发育中,缺失发生得越早,影响越大缺失的片段越大,对个体的影响也越严重,重则引起个体死亡,轻则影响个体的生活力。在人类遗传中,染色体缺失常会引起较严重的遗传性疾病,如猫叫综合征等。  重复 染色体上增加了相同的某个区段而引起变异的现象,叫做重复。但是如果重复的部分太大,也会影响个体的生活力,甚至引起个体死亡。例如,果蝇由正常的卵圆形眼变为棒状眼的变异,就是X染色体上某一区段重复的结果。  倒位 染色体在两个点发生断裂后,产生三个区段,中间的区段发生180 的倒转,与另外两个区段重新接合而引起变异的现象,叫做倒位。例如,普通果蝇的第3号染色体上有三个基因按猩红眼-桃色眼-三角翅脉的顺序排列(St-P-Dl);同是这三个基因,在另一种果蝇中的顺序是St-Dl-P,仅仅这一倒位的差异便构成了两个物种之间的差别。  易位 易位是指一条染色体的某一片段移接到另一条非同源染色体上,从而引起变异的现象。如果两条非同源染色体之间相互交换片段,叫做相互易位,这种易位比较常见。相互易位的遗传效应主要是产生部分异常的配子,使配子的育性降低或产生有遗传病的后代。例如,慢性粒细胞白血病,就是由人的第22号染色体和第14号染色体易位造成的。易位在生物进化中具有重要作用。例如,在17个科的29个属的种子植物中,都有易位产生的变异类型,直果曼陀罗的近100个变种,就是不同染色体易位的结果。

① 一个染色体组中不含同源染色体; ② 一个染色体组中所含的染色体形态、大小和功能各不相同; ③ 一个染色体组中含有控制一种生物性状的一整套基因,但不能重复。

(2)单倍体和多倍体的比较

单倍体 多倍体 概念 体细胞中含有本物种配子染色体数目的个体 由受精卵发育而成的,体细胞中含有三个或三个以上染色体组的个体 自然形成原因 由未经受精作用的卵细胞发育而形成单倍体 由于受自然条件剧烈变化的影响,有丝分裂过程受到阻碍,细胞核内染色体数目加倍。通过减数分裂形成染色体数目也相应加倍的生殖细胞,再经受精作用形成合子而发育成多倍体 人工诱导方法 花药离休培养 用秋水仙素处理萌发的种子或幼苗 植株特点 植株弱小,高度不育 茎秆粗壮,叶片、果实和种子都比较大,糖类和蛋白质等营养成分的含量都 有所增高,但发育延迟,结实率降低 意义 单倍体幼苗时,用秋水仙素处理,使染色体数目加倍,可迅速获得纯系植株,缩短育种年限,提高育种效率 选育多倍体新品种,如三倍体无子西瓜、八倍体小黑麦等 (3)同源多倍体和异源多倍体

同源多倍体指体细胞内增加的染色体组来自同一物种,即原来的染色体加倍形成的(如四倍体水稻、无子西瓜等)。异源多倍体指体细胞中各个染色体组来自不同的种甚至不同的属而形成的多倍体(如普通六倍体小麦、八倍体小黑麦等)。来源:https://www.atermamicrowave.com/xwzx/202412-13.html

(4)多倍体育种与单倍体育种的比较

① 多倍体育种:

② 单倍体育种:

③ 比较:

多倍体育种 单倍体育种 原理 染色体成倍增加 染色体组成倍减少,再加倍后得到纯种9指每对染色体上成对的基因都是纯合的) 常用方法 秋水仙素处理萌发的种子、幼苗 花药的离休培养后,人工诱导染色体加倍 优点 器官大,提高产量和营养成分 明显缩短育种年限 缺点 适用于植物,在动物方面难以开展 技术复杂一些,须与杂交育种配合 8.低温诱导植物染色体数目的变化

用秋水仙素作用于正在分裂的细胞时,能够纺缍体的形成,导致染色体不能移向细胞两极,从而引起细胞内染色体数目加倍,染色体数目加倍的细胞继续进行有丝分裂,将来就可能发育成多倍体植株。而本实验中利用低温诱导染色体数目的变化,低温的作用与秋水仙素的作用基本相似。与秋水仙素相比,低温条件容易创造和控制,成本低、对人体无害、易于操作。但通过显微镜观察时,只能观察到染色体数目的增加,增加的具体数目不容易确定。

9.遗传病的类型和实例

人类遗传病的类型 定义 实例 单基因遗传病 显性遗传病 由显性致病基因引起的遗传病 多指、并指等 隐性遗传病 由隐性致病基因引起的遗传病 白化病、苯酮尿症等 多基因遗传病 受两对以上的等位基因控制的遗传病 原发性高血压等 染色体异常遗传病 由染色体异常引起的遗传病 21三体综合征等。

10.先天性疾病、家族性疾病和遗传病的比较

先天性疾病不一定都是遗传病,后天性疾病不一定不是遗传病。所谓先天性疾病是指出生前既已形成的畸形或疾病。当一种畸形或疾病是由遗传决定的内因所致,而且在胎儿出生前,染色体畸形或致病基因就已表达或形成,这种先天性疾病当然是遗传病,例如并指、先天性聋哑,白化病,先天愚型等。但是,在胎儿发育过程中,由于环境因素的偶然影响,胎儿的器官发育异常,形成形态和机能的改变,也会导致先天性畸形或出生缺陷。例如母亲在妊娠前三个月内感染风疹病毒,可使胎儿产生先天性心脏病,这不是遗传物质的改变造成的,而是胚胎发育过程受到环境因素的干扰所致,虽是先天性的,但不是遗传病。来源:https://www.atermamicrowave.com/cshi/202412-18.html

家族性疾病是指一个家族中有多个成员患同一种病,即某一种疾病有家族史。在遗传病中显性遗传病往往也表现出明显的家族性倾向,如多指、多发性结肠息肉,抗维生素D佝偻病等。但是,遗传性疾病不一定有家族史。例如,隐性遗传病,由于患者的父母都是杂合子,所以表现型都正常,在患这类遗传病的家族中,发病的机会较少,所以家族中病例常常是散发的难以表现出家族性倾向,如果不是近亲结婚,往往在子代中只有少数的患者。

家族性疾病也不一定都是遗传病。这是因为同一家系的多个成员中,由于环境因素相同,也可能都患有相同的疾病,例如,由于饮食中缺少维生素A,一家中多个成员都可以患夜盲症。

11.人类基因组计划与人体健康

(1)人类基因组

指人体DNA分子所携带的全部遗传信息.人的单倍体基因组由23条双链的DNA分子组成,上面有3×109个碱基对,估计有3.5万个基因。

(2)人类基因组计划(HGP,HumanGenome Project)

研究人类的基因组,分析人类基因组的脱氧核苷酸序列,从而解读所有的遗传密码,揭示生命的所有奥秘。

(3)人类基因组计划的主要目标来源:https://www.atermamicrowave.com/cshi/202412-94.html

完成对人的基因组的3×109个碱基对的全部序列测定工作.阐明人体中全部基因的位置、功能、结构、表达调控方式及致病突变的全部信息。

其主要内容包括绘制人类基因组的四张图,即遗传图、物理图、序列图和转录图(参与该计划的国家有美、英、日、法,德、中)。

(4)人类基因组计划的研究工作

① 对人的基因组进行分组.例如.可根据染色体不同分为24组.而每条染色体又可分为长臂区、短臂区、带和亚带等。来源:https://www.atermamicrowave.com/zhishi/202412-143.html

② 对人的基因组进行标记,即为每条染色体或更小的区域都找到一些特定的DNA序列作为标志。

③ 利用已知的标记序列,将已克隆的基因组DNA进行排序。

④ 克隆并测定人的基因组的全部序列。来源:https://www.atermamicrowave.com/bkjj/202412-21.html

⑤ 具体研究每一个基因的结构、功能、表达调控等性质。

(5)我国加盟人类基因组计划

1999年9月,中科院遗传所人类基因组中心与国家人类基因组南方和北方中心共同承担了国际人类基因组大规模测序任务的1%。即3号染色体短臂从D333610至端粒的30Mb区域上3000万个碱基对的测序任务。来源:https://www.atermamicrowave.com/cshi/202501-223.html

在人类众多基因中.人们最关心的还是与各种疾病相关的基因。据估计,与人类疾病相关的基因约有5000个,至今已有1500个与疾病相关的基因被分离和确认。破译这些基因的突破口是获得具有遗传病家系的血样,再进行DNA分析、测定。我国有占世界22%的人口,拥有56个民族及206个民族关系,是一个少有的多样性基因国家。由于经济文化落后,长期地理环境隔绝和通婚范围狭小等原因,我国的遗传病家系非常丰富。谁先获得遗传病家系的血样,谁就可以最先破泽,进而获取专利,从而垄断该项生物工程产品的未来市场.我国是人类基因组计划的加盟者,有资源共享的优势,将为我国今后的生物工程产业,特别是医药行业带来无限经济效益。

(6)完成人类基因组计划的意义

① 可以使人类进一步加深对自身的了解,给整个生命科学甚至整个人类社会带来巨大影响。

② 对人类基因组的精确了解,有助于对人类基因的表达调控等进行更为深人的研究。

③ 获得人类的全部基因序列,特有助于人类认识许多遗传疾病以及癌症的致病机理,为分子诊断、基因治疗等提供理论依据,并有助于人们了解人体的发育过程,增强人类健康。

④ 对进一步了解人类细胞的生长、分化和个体发育的机制以及生物的进化等有重要意义。

⑤ 人类基因组计划的实施,将推动生物高新技术的发展并产生巨大的经济效益。

因为他们解读了遗传密码及其在蛋白质合成方面的机能

1968年诺贝尔生理学或医学奖授奖仪式上

皇家卡罗琳学院诺贝尔生理学或医学奖评定委员会委员

P·雷卡德教授致词

陛下、各位殿下、女士们、先生们:来源:https://www.atermamicrowave.com/xwzx/202412-45.html

正好是在100年前,1868年的秋季,一位名叫Friedeich Miescher 的年轻的瑞士医生,从细胞核中分离出一种新型的化合物。他把这种化合物称为核素,今天我们称之为核酸。Miescher 并不知道,一位捷克教士格里戈尔·孟德尔(Gregor Mendel)两年以前,在布尔诺城完成了一系列后来证明与Miescher 的发现有密切关系的实验。孟德尔用豌豆进行了非常简单的实验,发现我们的遗传特征包含于许多独立的基因之中,孟德尔的工作标志着遗传学开始作为一门科学而被建立起来了。

核酸与基金本来是两个互不相干的概念,但它们却共同构成本年度诺贝尔医学奖的基础。霍利、科拉纳、尼伦伯格三人因为在遗传密码(或称生命密码)方面的研究而获奖,他们的研究就以核酸和基金这两个概念为基础的。

在19世纪还没有设立诺贝尔奖;如果有的话,也未必会授予发现核酸和基因的人。Miescher于1890年逝世,他的作品在他逝世之后方得详尽发表。1866年孟德尔首次发表了他的观察结果,但他的报告没有引起人们的注意,而且很快就被人遗忘了。

很长一段时间内人们未能注意到基因与核酸之间的关系。25年前,核酸研究仍被认为是一个相当乏味的只限于少数人涉猎的领域,几乎没有什么科学家对此感到兴趣。在少数对此感兴趣的科学家中,有一位便是卡罗琳学院的Einar Hammarsten 教授。他高瞻远瞩,很早就激励了几位瑞典科学家--尤其是Trobj?rn Caspersson 在这方面作出重要贡献,后者证明了核酸有重要的生物学意义。来源:https://www.atermamicrowave.com/cshi/202501-302.html

1944年,核酸研究得到长足的发展。美国科学家Avery 在那年成功地借助于核酸将遗传性状从一种细菌移至另一种细菌,他用这个实验证明基因即有核酸构成。Avery 的发现标志着一个新的科学分子的建立,这新学科后来被称为分子生物学,并且至今一直使用生物化学方法研究遗传物质。分子生物学建立以来不断蓬勃发展,下列事实即证明这点:今日的授奖是自1958年以来第五次因这方面的研究而被授予诺贝尔生理学或医学奖。

那么,什么是遗传密码?它为什么被称为生命密码?核酸是非常复杂的分子,但它们的结构却显示出一定的规律性,它们由数量有限的较小的构件组成。如果我们将核酸与语言相比,那么我们便能将它的构件比作语言中的字母。利用这种类比,我们便可以所细胞内核酸中的语言在描述我们的遗传性状。它告诉我们,我们的眼珠和我们的孩子的眼珠是蓝色的还是黑色的,我们是身强力壮还是羸弱多病。

我们的细胞里还有第二种语言:用蛋白质字母系统写成的蛋白质语言。每个细胞含有数以千计的蛋白质,生物体正常生命活动所需的化学反应由这些蛋白质完成。每种蛋白质在某种核酸的指导下合成,黑眼珠的孩子从父母那儿接受了一些有能力导致形成合成眼内黑色色素所必需的蛋白质的核酸。正是核酸的化学结构决定了蛋白质的化学结构,核酸的字母系统支配了蛋白质的字母系统。遗传密码是一本字典,靠了它我们便能将一种字母系统译为另一种字母系统。来源:https://www.atermamicrowave.com/xwzx/202412-3.html

罗塞塔石碑的碑文用希腊文字系统和埃及象形文字系统雕刻而成。当这些铭文解读成功之后,考古学家便利用这经验去解读象形文字。在理论上,人们可以用同样的方法解读遗传密码:逐个字母地比较某具体核酸的化学结构与相应蛋白质的化学结构。但由于技术上的原因,这是不可能的。

对此,尼伦伯格找到了一个非常简单尔巧妙的解决办法:他认识到,生物化学家能在试管内建立一个系统,该系统以核酸为模板形成蛋白质,因此与考古学家相比,生物化学家有着无法比拟的优越之处。上述系统可比作翻译机器,科学家将用核酸字母系统写成的句子馈入,然后机器将这些句子翻译成蛋白质字母系统。尼伦伯格合成一种非常简单的核酸,它有一条链,有许多反复出现的同一个字母组成。上述系统用这种核酸产生了一种蛋白质,她也只含一个字母,但这是蛋白质字母系统的字母。尼伦伯格用这种方法既解读了第一个“象形文字”,又证明了细胞内的机制如何能用来翻译遗传密码。此后,这方面的研究工作进展非常迅速,1961年8月,尼伦伯格报告了他最早的一些研究结果,又过了不到五年,遗传密码的所有细节都搞清了,这方面的主要工作是尼伦伯格和科拉纳做的。

最后的工作大部分是科拉纳完成的。许多年内他系统地设计了用于下述目的的多种方法,人们用这些方法合成了一些结构已完全清楚的核酸(这是一些大分子,每个组成部分在什么位置已搞清)。科拉纳的合成核酸是最终解读遗传密码的先决条件。

什么是细胞内翻译遗传密码的机制?霍利着手解决这个问题并取得了成功。有一类特别的核酸,称为运转RNA,霍利就是运转RNA的发现者之一来源:https://www.atermamicrowave.com/cshi/202501-152.html。运转RNA能读出遗传密码,并将它翻译成蛋白质字母系统。经过多年工作,霍利成功地制备了一种纯的运转RNA,最后于1965年搞清其准确的化学结构。霍利的工作表明,有生物学活性的核酸的化学结构首次得到完全测定。

近20年来,分子生物学突气猛进,其中最重要的成就便是遗传密码的解读及其功能的阐明,这些成就使人们得以了解遗传机制的细节。迄今为此的工作可视为基础研究,但通过这些工作,我们现已开始了解遗传在其中其主要作用的许多疾病的原因。

霍利博士、科拉纳博士、尼伦伯格博士:1958年Edward Tatum 接受了诺贝尔奖,他在授奖仪式上的演讲的结尾时凝视着水晶球,试图预言分子生物学发展的若干前景。他作了一些联想,其中之一便是:在至少某些听众的有生之年,遗传密码问题会得到解决。这在当时真是一个大胆的预言。事实上,解读头几个遗传密码字母用了不到三年,而且,由于你们三位的新颖设计,遗传密码的本质和他在蛋白质合成中的许多功能,也在不到八年的时间内真相大白。你们三位在现代生物学上共同写下了最激动人心的篇章。

我非常高兴能代表卡罗琳学院向你们表示祝贺,并请你们从国王陛下手中接受本年度的医学奖。

----全文摘自《诺贝尔奖获得者演讲集》生理学或医学(1963-1970),郑伯承、于英心、扬枕旦等译,学苑出版社1991年6月

关于“人类基因组中的遗传密码:解读生命信息”这个话题的介绍,今天小编就给大家分享完了,如果对你有所帮助请保持对本站的关注!