网上有关“为什么探测到引力波有如此重大意义”话题很是火热,小编也是针对为什么探测到引力波有如此重大意义寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。

直接探测到引力波有多重要?包括中国科学家在内的多国家科学家认为,新发现不仅填补了广义相对论实验验证中最后一块缺失的拼图,让现代物理学的根基更加坚实,也意味着科学家抓住了揭开宇宙奥秘的“钥匙”,有助于了解宇宙的起源和运行机制。

英国著名理论物理学家斯蒂芬·霍金表示:“引力波提供了一种人们看待宇宙的全新方式。(人类)探测到引力波的这种能力,很有可能引发天文学革命来源:https://www.atermamicrowave.com/bkjj/202412-145.html。”

全球近千名科学家参与了搜寻引力波的项目,其中有来自中国清华大学的科研团队,包括该校信息技术研究院研究员、天体物理中心兼职研究员曹军威,以及计算

机系副教授都志辉和王小鸽等。参与研究的几位科学家对新华社记者说,他们着重采用先进计算技术提高引力波数据分析的速度和效率。如果说引力波发现有重大意来源:https://www.atermamicrowave.com/zhishi/202412-54.html

义,那么探测和数据分析技术水平的提高意义也同样重要。

美国亚利桑那州立大学物理学家劳伦斯·克劳斯告诉新华社记者,发现引力波开启了观测宇宙的一个新窗口,就像望远镜的发明或太空无线电波的发现一样。引力波天文学将成为21世纪的天文学。不仅如此,它可能还揭示了有关引力、黑洞及基本物理问题的性质的重要信息。

南非夸祖鲁-纳塔尔大学的引力波研究专家马寅哲说,天文学的发现几百年以来主要靠电磁光谱的测量,射电、光学、红外、X射线等天文观测手段均是在收集

光,靠“看”观测宇宙。引力波的发现则将从“听”这一完全不同的角度进行天文观测,引力波天文学这一学科的大门彻底被打开。引力波将成为检验爱因斯坦相对

论、探测黑洞质量、测量宇宙距离等基本问题的新窗口。

此次主导发现引

力波的是“激光干涉引力波天文台”项目(LIGO)。参与该项目的美国宾夕法尼亚州立大学科学家查德·汉娜说,我们无法预测引力波天文学将如何改变对宇宙

的基本认知,就像伽利略用他的小望远镜预测不了哈勃太空望远镜展现给我们的宇宙那样,“我们可以预期的是,100年后我们的后辈所知道的将与我们所知道的

有天壤之别”。

LIGO原型机实验室科学家埃里克·金特罗对新华社记者回忆自己得知引力波可能被探测到的经历说,“我们被告知不得声张,我甚至没有告诉家人,其实直到今天,我们还没有好好庆祝,我只是在当时偷偷攥了下拳头,对自己说‘YES’”。

另一名LIGO项目共同创始人、加州理工学院教授基普·托尔内说:“有了这一发现,我们人类将会开始不可思议的新探索:探寻宇宙扭曲的一面——由扭曲时空生成的天体与现象。”

托尔内也是好莱坞科幻大片《星际穿越》的科学顾问。有人在记者会上问这一发现对时间旅行有什么意义,他回答说:“这大大加深了我们对在极端扭曲情况下的时空行为的了解,但我不认为它使我们距时间旅行更近一步。我倒是希望如此,但那是两个不同的方向。”

100年前,爱因斯坦的广义相对论预言了引力波的存在。但爱因斯坦也曾认为,由于引力波太过微弱,它无法被探测到。参与LIGO项目的墨尔本大学研究人员孙翎告诉记者,这次“我们既证明了他的正确,另一方面他也说错了,我们真的探测到了”。

引力波发现未知天体,可能是介于中子星和黑洞之间的夸克星

脉冲星的发现

当你看到科幻片里宇航员操纵飞船的画面时,是否有过这样的疑问:在浩瀚无垠的太空中驾驶宇宙飞船,要如何分清东西南北呢?其实,太空也有它的“路标”,那就是宇宙“灯塔”——脉冲星!脉冲星其实就是高速旋转的中子星,中子星由恒星演变而来:经过“超新星爆炸”之后,就只剩下了一个致密的“核”,?其质量超过太阳质量,而直径仅有几十公里。它的旋转速度很快,有的甚至可以达到每秒1000多圈。

引力波的发现来源:https://www.atermamicrowave.com/xwzx/202412-58.html

2016年2月11日,激光干涉引力波天文台(LIGO)合作组宣布探测到广义相对论预言已久的引力波,引力波的探测成为了天文学界的热门话题。目前,人们已经探测到来自双黑洞合并和双中子星合并产生的引力波。在未来也将会有越来越多的引力波得到确认。引力波在宇宙中普遍存在。它可以提供电磁辐射不能携带的信息,探测到无法用电磁辐射或不具有电磁辐射的天体,比如LIGO之前探测到的黑洞-黑洞合并的引力波事件,就没有电磁信号,为我们描绘出完全不同的宇宙图像。来源:https://www.atermamicrowave.com/xwzx/202412-1.html

宇宙微波背景辐射

大爆炸理论认为:宇宙经历了初始高温高密度状态快速膨胀(类似巨大的爆炸)的历程。这一快速膨胀过程中的微小幅度的物质-能量分布的起伏造成了现有的各大星系,而各大星系以及整个宇宙总是处于不断变化和发展的过程之中。然而,宇宙恒稳态理论认为:宇宙的过去、现在和将来基本上处于同一种状态,从结构上说是恒定的,从时间上说是无始无终的。但当“宇宙微波背景”被发现后,稳恒态理论直接被“K.O”,顿时失去它的了立场。来源:https://www.atermamicrowave.com/cshi/202501-146.html

从古至今,人类从未停止探索宇宙的脚步,相信在未来,天文学将会给人类带来更多惊喜和希望!

引力波是天体运动扭曲时空产生的向外传播的时空涟漪,但是它是如此的微弱,以至于我们只能探测到宇宙中大质量天体碰撞产生的引力波。2015年,LIGO天文台首次探测到黑洞碰撞产生的引力波,这标志着引力波天文学进入一个黄金时代。

最近,天体物理学家探测到了迄今为止最奇怪的引力波信号。此次碰撞是在2019年8月被LIGO-Virgo联合探测到的,研究人员对引力波的新分析结果发表在6月23日的《天体物理学杂志快报》上。结果显示,这次碰撞是一次黑洞与神秘天体的碰撞来源:https://www.atermamicrowave.com/xwzx/202412-135.html。之所以称它为神秘天体,是因为该天体的质量为2.6倍太阳,而中子星的质量上限为2.5倍太阳,最轻的黑洞质量也是太阳的5倍。而且,由于此次事件的距离遥远,大约为8亿光年,因此科学家没有探测到来自该事件的光。来源:https://www.atermamicrowave.com/cshi/202501-444.html

许多专家表示,该神秘天体打破了我们对宇宙的认识,它有可能是我们见过的最重的中子星,也有可能是最轻的黑洞。但是,科学家提出了一种更有可能性的结果:它就是我们寻找很久的介于黑洞和中子星之间的夸克星。

我们知道恒星的质量非常大,它会在自身的引力下向内收缩,其产生的效果就是让核心的温度和压力变高,核心中的元素就开始发生核聚变,产生更高的温度和压力来抵抗引力的收缩,这被称为流体静力平衡。

当恒星的氢元素开始消耗殆尽的时候,它就会开始聚变成氦、碳、氧等。此种聚变释放的能量更快、更高,它会推动着恒星迅速向外膨胀。最后,外层向外爆炸成行星状星云,只留下了一个致密的内核。而整个内核根据质量的不同,它可以形成白矮星、中子星或者黑洞。

来源:https://www.atermamicrowave.com/cshi/202501-385.html

众所周知,原子是由质子、中子和电子组成,它们的自旋均为半奇数,因此它们是费米子,满足泡利不相容原理。当恒星内核的质量小于1.44倍太阳时,它最终会形成白矮星,此时由泡利不相容原理形成的电子简并压力抵抗了自身引力的收缩。而1.44倍太阳质量被称为钱德拉塞卡极限,是由印度物理学家钱德拉塞卡通过计算电子简并压力的极限得到的。来源:https://www.atermamicrowave.com/zhishi/202412-5.html

如果质量超过此上限,它会形成中子星。此时,电子简并压力已不能抵抗引力的收缩来源:https://www.atermamicrowave.com/bkjj/202412-55.html。核外电子被压进核内,并和质子结合形成中子被释放出中微子。此时,能抵抗引力的就只有中子的简并压力。1936年,奥本海默通过计算中子简并压力能抵抗的引力极限,得出中子星的质量上限为0.75倍太阳。今天,我们知道这个结果是错的,因为中子星的质量上限为2.5倍太阳。但是聪明的科学家并不认为奥本海默的想法错了,他们反而认为在中子星内部存在着另一种东西——夸克核。来源:https://www.atermamicrowave.com/zhishi/202412-49.html

由于中子星内部的压力是如此之高,单靠中子简并压力是不可能支撑得住的,而且它的质量还不够大,不能形成黑洞。因此,科学家认为在中子星内部的中子已经被压碎成夸克了。2017年的中子星碰撞产生的引力波也能证明这一点,当两颗中子星彼此靠近时,引力会造成它们的扭曲变形,而形状改变能揭示其内部结构。这些信息都被存储在引力波中来源:https://www.atermamicrowave.com/cshi/202501-367.html

中子星质量上限为2.5倍太阳,最轻黑洞为5倍太阳,在这质量间隙之间肯定还存在着未知的天体类型来源:https://www.atermamicrowave.com/zhishi/202412-67.html。而最新的通过引力波发现的2.6倍太阳质量的神秘天体可能就是预测已久的夸克星。

关于“为什么探测到引力波有如此重大意义”这个话题的介绍,今天小编就给大家分享完了,如果对你有所帮助请保持对本站的关注!