网上有关“谁能告诉我关于极坐标的知识”话题很是火热,小编也是针对谁能告诉我关于极坐标的知识寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。
极坐标:
在平面直角坐标系上的点可以用横坐标和纵坐标来表示
当然也可以以其他形式来表示
设点A,A距离原点的距离为ρ(有些书上用r表示)
而A点与原点的连线和X轴正半轴所成的夹角记为θ
因此在平面直角坐标系上的点可以和极坐标上的点
形成一一对应的关系
由三角几何关系可知
x=ρcosθ;y=ρsinθ
抛物线:y=a(x-b)∧2+c
极坐标为ρsinθ=a(ρcosθ-b)∧2+c
简单抛物线y=x∧2
极坐标ρsinθ=(ρcosθ)∧2 →sinθ=ρ(1-sinθ)∧2
也就是把直角坐标里的x换为ρcosθ
y换为ρsinθ
就可以得到相应的极坐标方程
除了极坐标代换还有
1.一般极坐标代换
2.球面坐标代换
3.柱面坐标代换
4.自然坐标
5.一般坐标代换
所有的坐标代换都可归于
一般坐标代换
极坐标系的建立:
在平面内取一个定点O,叫作极点,引一条射线Ox,叫做极轴,再选定一个长度单位和角度的正方向(通常取逆时针方向).对于平面内任意一点M,用ρ表示线段OM的长度,θ表示从Ox到OM的角度,ρ叫点M的极径,θ叫点M的极角,有序数对(ρ,θ)就叫点M的极坐标.这样建立的坐标系叫极坐标系,记作M(ρ,θ).若点M在极点,则其极坐标为ρ=0,θ可以取任意值.此时点M的极坐标可以有两种表示方法:(1)ρ>0,M(ρ,π+θ)(2)ρ>0,M(-ρ,θ)同理,(ρ,θ)与(-ρ,π+θ)也是同一个点的坐标.又由于一个角加2π(n∈Z)后都是和原角终边相同的角,所以一个点的极坐标不唯一.但若限定ρ>0,0≤θ<2π或-π<θ≤π,那么除极点外,平面内的点和极坐标就可以一一对应了.2.求曲线的极坐标方程的方法与步骤:1°建立适当的极坐标系,并设动点M的坐标为(ρ,θ).2°写出适合条件的点M的集合.4°化简所得方程.5°证明得到的方程就是所求曲线的方程.(3)三种圆锥曲线统一的极坐标方程.过点F作准线l的垂线,垂足为k,以焦点F为极点,Fk的反向延长线Fx为极轴,建立极坐标系.设M(ρ,θ)是曲线上任意一点,连结MF,作MA⊥l,MB⊥Fx,垂足分别为A,B.设焦点F到准线l的距离|Fk|=p,由|MF|=ρ,|MA|=|Bk|=p+ρcosθ,得这就是椭圆、双曲线、抛物线的统一的极坐标方程.其中当0<e<1时,方程表示椭圆,定点F是它的左焦点,定直线l是它的左准线,e=1时,方程表示开口向右的抛物线.e>1时,方程只表示双曲线右支,定点F是它的右焦点,定直线l是它的右准线.若允许ρ<0,方程就表示整个双曲线.3.极坐标和直角坐标的互化把直角坐标系的原点作为极点,x轴的正半轴作为极轴,并在两种坐标系中取相同的长度单位,设M是平面内任意一点,其直角坐标(x,y),极坐标是(ρ,θ),从点M作MN⊥Ox,由三角函数定义,得:x=ρcosθ,y=ρsinθ.注:在一般情况下,由tgθ确定角θ时,可根据点M所在的象限取最小角
关于“谁能告诉我关于极坐标的知识”这个话题的介绍,今天小编就给大家分享完了,如果对你有所帮助请保持对本站的关注!