网上有关“我知道的天文小知识”话题很是火热,小编也是针对我知道的天文小知识寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。

水星

图解:信使号航天器的图像显示了人类从未见过的水星部分。

水星是太阳系中最小的行星(冥王星,曾经是最小的行星,现在被命名为矮行星),而且有着八大行星中最大的轨道偏心率。水星也是离太阳最近的行星,与太阳的距离为4600万公里(近日点)至7000万公里(远日点)。

尽管它与太阳有着这般近的距离和位置,但水星地表温度却十分神奇;夜间最低100开氏度(K),白天最高70开氏度(K)(仅次于金星)。虽说由于水星靠近太阳,但与金星相比可能更难被观测到,它只是偶尔会在黎明和夜空中出现,这对于许多观星者来说是一个十分神奇的景象。

地表

图解:水星的地质表面。

在外观方面,水星的表面看起来与地球的月亮非常相似。整个表面散布着许多大型陨石坑,周围都是类海平原。这表明这颗星球已经历了数十亿年的地质休眠。这些陨石坑是大约46亿年前由许多小行星和彗星撞击水星地表所造成的。

由于缺乏大气层,当撞击发生时,没有什么可以减缓小行星或彗星的速度,因撞击十分猛烈。水星的地表的特征地貌命名有许多来源-取自已故艺术家、画家、音乐家以及作家的姓名。不过值得注意的是,许多关于水星地表的许多信息是基于1975年水手号太空器执行的探测任务,因此它也成为四大类地行星中最不为人知的一颗。

地质结构

图解:水星的地质结构与地球相比。

水星是太阳系中四个类地行星(另外三颗是金星、地球和火星)之一。它是最小的行星(行星赤道半径为2,439.7公里); 实际上,它甚至比太阳系中两颗最大的卫星泰坦和伽倪墨得斯还要小。水星由大约70%的金属和30%的硅酸盐物质组成。

图解:类地行星的大小比较 (由左至右):水星、金星、地球、和火星

据说,水星的核心含有丰富的铁,因为它有较高的密度(科学家估计,在太阳系中的所有行星中,水星的密度最高),即5.427g/cm?(仅次于地球)。至于其内部结构,地质学家一般认为,水星的核心占行星体积的42%左右,半径约为1,800公里。地幔由硅酸盐材料组成,围绕核心,厚度约为500至700公里。最后,地壳估计厚约100至300公里。地表分布着有许多绵延数百公里的狭窄山脊,是在水星的核心和地幔随着地壳的凝固而冷却和收缩时形成的。

关于水星形成的理论

图解:描绘水星形成的艺术作品。

关于水星表面和地质结构如何形成的有几种理论。一种理论认为撞击导致水星的体积和质量减小。科学家普遍认为水星现有体积比其原始的体积要小,它的大部分地壳和地幔因水星1/6原始质量大小的小行星所引起的撞击而剥离。这一理论被称为巨型撞击假说,科学家们也认为这是月球形成的原因。

另一个理论提出,在太阳系形成过程中,水星的体积是现在的两倍。那时候,太阳也正在形成,太阳星云向宇宙中的猛烈地爆发出能量,直到它最终稳定。当原太阳慢慢形成我们今天所知的太阳时,温度使大部分水星表面破裂并蒸发,最终只剩下水星原始大小的一半。另一种理论推测,太阳星云拖走了形成行星的粒子,从而导致了较轻粒子的丢失。

外大气层(大气和地质条件)

图解:水星的大气和地质条件。

如前所述,水星的表面温度十分极端(夜间100开氏度,白天700开氏度); 这是由于缺乏大气层包裹,无法减弱太阳所造成的影响(其大气层可能因为受到来自太阳酷热的高温,已经蒸发)。在白天,根据于水星在其轨道上的位置不同,地表温度平均在550开氏度(近日点)至700开氏度(远日点)之间。

图解:国家航空航天局确认,在水星北极的永久阴暗坑洞内,发现隐藏着大量冻冰。

到了晚上,地表温度平均为110开氏度; 这是由于水星缺少活跃的核心,它不能有效保持大气层从而造成热量的丧失。据此,地质学家普遍认为水星上是有冰的。事实上,根据最近对水星表面的观测表明,水星表面有几片白色斑块,这暗示了水星上有冰冻的水的存在。除了水星核心的不活跃之外,行星的大小也与其保持适量大气层的能力有关。水星体积与质量都很小,无法产生足以容纳大气的重力。因此,其表面是剧烈和不稳定的——在水星表面的不同粒子的原子总是不断外逸但也不停补充。

水星的自转与公转

图解:水星的自转与公转轨道. 来源:----https://www.wzwebi.com/zhishi/202412-86.html

到目前为止,水星有着太阳系中八个行星中最大的轨道偏心率; 上文所提到的,在它的远日点,水星距离太阳有7000万公里; 在它的近日点,则是接近4600万公里。绕日公转一周需要87.969个地球日(意味着水星上的一年只需要大约88天)。然而有趣的是,尽管水星的体积很小,但它的自转却非常缓慢(可能与它拥有不活跃的核心有关):水星完成自转一周(在水星上度过一天)需要超过58天,即58.7个地球日。

图解:水星轨道 (**)。日期参考2006年。

图解:在公转一周之际,水星自转1.5圈,所以完整的公转两周之后,同一个半球再度被照亮。

相关知识

水星,中国古称辰星;到西汉时期,《史记?天官书》作者天文学家司马迁从实际观测发现辰星呈灰色,与“五行”学说联系在一起,以黑色配水星,因此正式把它命名为水星。

参考资料

1.WJ百科全书

2.天文学名词

3. thetimenow-孟冬

转载还请取得授权,并注意保持完整性和注明出处

求基础天文知识

1.有关天文的知识

本人正是初二学生

呵呵

先给你推荐一些书籍

日本的一本《宇宙 原来如此有趣》,我看过了,是入门的,但也不是特别简单,挺好的。

还有霍金的《时间简史》

中国很好的天文杂志《天文爱好者》主编辑写的《现代天文学十五讲》,里面内容挺全的。

阿西莫夫写的一些书,语言通俗易懂,又有很多知识。像是《宇宙秘密》。

还有商务印书馆的《物理学》,算是哲学类的。

《爱因斯坦的圣经》《霍金的宇宙》

还有一本重量级的书——剑桥天文爱好者指南

你还可以订阅天文爱好者,这个杂志非常好

会有很多

你可以多去不同的书店找找

还有书的系列目录

可以去图书馆借,以及查询

至于天文介绍

你去百科看就可以了

先有一个系统的认识比较好。

太多了我弄不下来

网址复制给你吧

?wtp=tt

/view/20776

2.天文学基本知识

天文和气象不同,它的研究对象是地球大气层外各类天体的性质和天体上发生的各种现象——天象,而气象研究的对象是地球大气层内发生的各种现象——气象。

天文学所研究的对象涉及宇宙空间的各种物体,大到月球、太阳、行星、恒星、银河系、河外星系以至整个宇宙,小到小行星、流星体以至分布在广袤宇宙空间中的大大小小尘埃粒子。天文学家把所有这些物体统称为天体。地球也是一个天体,不过天文学只研究地球的总体性质而一般不讨论它的细节。另外,人造卫星、宇宙飞船、空间站等人造飞行器的运动性质也属于天文学的研 天文究范围,可以称之为人造天体。来源:----https://wzwebi.com/xwzx/202412-31.html

宇宙中的天体由近及远可分为几个层次:(1)太阳系天体:包括太阳、行星(包括地球)、行星的卫星(包括月球)、小行星、彗星、流星体及行星际介质等。(2)银河系中的各类恒星和恒星集团:包括变星、双星、聚星、星团、星云和星际介质。(3)河外星系,简称星系,指位于我们银河系之外、与我们银河系相似的庞大的恒星系统,以及由星系组成的更大的天体集团,如双星系、多重星系、星系团、超星系团等。此外还有分布在星系与星系之间的星系际介质。

天文学还从总体上探索目前我们所观测到的整个宇宙的起源、结构、演化和未来的结局,这是天文学的一门分支学科——宇宙学的研究内容。天文学按照研究的内容还可分为天体测量学、天体力学和天体物理学三门分支学科。

天文学始终是哲学的先导,它总是站在争论的最前列。作为一门基础研究学科,天文学在不少方面是同人类社会密切相关的。时间、昼夜交替、四季变化的严格规律都须由天文学的方法来确定。人类已进入空间时代,天文学为各类空间探测的成功进行发挥着不可替代的作用。天文学也为人类和地球的防灾、减灾作着自己的贡献。

3.天文学主要要掌握哪些知识点

天文学知识最常识的:21厘米辐射:由星际空间中寒冷稀薄的氢云发射的电磁辐射。

3α过程:在核聚变反应中,三个氦核聚合成一个炭核的过程。 3千秒差距旋臂:一团以53公里/秒的速度远离银河中心的中性氢云。

埃:长度单位,1埃=1e-10米,通常用来度量光的波长。 矮新星:会产生周期性的类似新星爆发现象的天体,成因可能是双星系统中的白矮星。

氨基酸:组成蛋白质的有机分子。 暗物质:用来填补理论中质量缺陷的假想物质。

暗线光谱:见吸收光谱。 暗星云:由尘埃和气体等不发光物质组成的星云。

奥尔特云:位于太阳系外层的云团,被认为是彗星的发源地。 巴尔莫线系:氢原子的一组光谱线,位于可见光和近紫外区。

白矮星:白矮星是内核塌缩后已经死亡的恒星,大小和地球类似。 百万秒差距(Mpc):一百万个秒差距。

半长轴:椭圆长轴的一半。 棒旋星系:一种漩涡星系,内部的旋臂呈明显的棒状。

暴胀宇宙:一种存在早期膨胀阶段的大爆炸宇宙模型。 倍利珠:日全食时通过月球的起伏表面射出的太阳光。

本影,暗影:在影子中,光线被完全遮蔽那个区域。 变星:亮度周期变化的恒星。

标准时:等于时区中央经度上的地方平时。 表岩屑:一种由破碎的岩石屑构成的土壤。

波长:两个相邻的波峰或者波谷之间的距离,通常用λ表示。 波长最大值:完全辐射体发射的波谱中能量最大的谱的波长,仅仅与物体的温度有关。

捕获假说:一种关于月球起源的理论。 不规则星系:外表不规则的巨大气体云,包含大量的星族I和星族II恒星,但没有旋臂。

长周期变星:光变周期在100到400天的变星。 超导体:对于某些物体,当温度降低到一定程度的时候,电阻值将会降为零,处于这种状 尘埃尾:由尘埃等不带电物质构成的慧尾。

赤道式装置:可以在赤经和赤纬方向运动的装置。 赤纬:用于天球的一种坐标,类似地球上的纬度。

臭氧层:地球大气层的一层,位于地表以上15-30km,具有吸收紫外线的作用。 春分,春分点:天球上太阳由南半球移向北半球在天赤道上经过的那一点。

此时大约是3 月21日左右。磁层:行星的磁场。

次大气层:从行星内部逃逸出来的富含二氧化碳的气体。 次极小:在食变双星的光变曲线中,较浅的那一次交食。

次镜:反射望远镜中将光线发射到一点以利于观测的那面镜子。 大潮:满月或新月时出现的大幅度的海潮。

大碰撞假说:认为月球形成于一次小行星与地球的碰撞。 大气窗口:电磁波谱中可以通过地球大气层的部分,包括射电、红外和光学波段。

大统一理论:将电磁力、强相互作用和弱相互作用统一为一种作用的理论。 带纹:木星大气层中的条状云带。

大爆炸理论:一种认为宇宙起源于大爆炸的理论。 灯塔理论:认为脉冲星是自传的中子星的一种理论。

光年:光在一年中走过的距离。 地方天球子午圈:过天顶和天低的南北方向大圆 地平式装置:可以在水平和竖直方向移动的望远镜系统。

地震波:一种通常在地震时才出现的可以横穿地球的机械波。 第二星族:含重元素较少的恒星,此类恒星比较老,多分布于银核和银韵中。

第一星族:含重元素较多的恒星,此类恒星比较年轻,多分布于银盘上。 电波星系:一种发射强射电信号的星系。

电磁辐射:在空间中传播的电磁场。如:光,无线电波 电荷耦合元件( CCD ):半导体光电成像设备。

很适用于天文观测。 电子:一种带单位负电荷的小质量粒子。

电子伏特:能量单位,等于1单位电子电量乘以1伏特。 冬至,冬至点:天球上太阳距离地球最近的那一点。

也就是大约每年12月22日。动星系核:发出很强辐射的星系。

多普勒效应:由被测物体运动导致的谱线波长变化。 多普勒致宽:由气体中原子的运动造成的谱线加宽。

发电机效应:一种理论,认为地球磁场是由熔融地核产生的。 发射谱线:由原子辐射出的光子在光谱中产生的亮线。

发射星云:被恒星的紫外辐射激发而发光的气体云。 发射光谱:包含发射线的光谱。

反射望远镜:利用反射镜将光汇聚到焦点上成像的望远镜系统。 反射星云:通过反射星光而发光的星际尘埃云。

范艾伦带:由地球磁场俘获的高能离子形成的辐射带。 非宇宙学红移:不是由宇宙膨胀效应所导致的红移。

分光视差:分析恒星谱线以测定恒星距离的方法。 分光双星:从子星始向速度的变化而判知的恒星。

分裂假说:一种关于月球起源的假说,认为月球是从地球中分离出去的。 分子云:包含大量分子的浓密星际气体云。

封闭宇宙:一种认为有足够的物质能够使宇宙停止膨胀的宇宙模型。 辐射点:发生流星雨的时候,将流星的轨迹反向延长将会汇聚在一点上,这一点称作辐射点。

辐射纹(月面):陨星撞击月亮表面的时候,所产生的很多由撞击弹坑向外辐射的白色条纹 。辐射压:当物体的表面吸收了光子以后,会受到一个压力。

高斯:磁感应强度的单位。 各向同性:宇宙学假设,认为宇宙在各个方向上性质相同。

共同吸积假说:一种认为月球和地球共同形成的理论。 共振:两个周期运动相互同步的现象。

光变曲线:亮度随时间变化的曲线,常用来分析变星和食双星。 光度:星体在一秒钟内辐射出的总能量。

光度计:用于测。

4.中国古代文化常识天文地理

我国领土辽阔广大,总面积约960万平方千米,仅次于俄罗斯、加拿大,居世界第3位,第四位为美国。差不多同整个欧洲面积相等。我国领土的四端为:最东端在黑龙江和乌苏里江的主航道中心线的相交处(135°E多),最西端在帕米尔高原附近(73°E),东西跨经度60多度,东西相距约5000千米,最南端在曾母暗沙(4°N)、最北端在漠河以北黑龙江主航道的中心线上(53°N)多,南北跨纬度约50度,南北相距约5500千米。 来源:----https://www.nanren30.com/zhishi/202412-9.html

我国的海陆位置:亚洲东部、太平洋的西岸。

00我国半球位置:东半球和北半球。

00我国的经纬度位置:我国领土南北跨越的纬度近50度,大部分在温带,小部分在热带,没有寒带。我国领土[1]总面积约960万平方千米,仅次于俄罗斯、加拿大,居世界第3位,第四位为美国。差不多同整个欧洲面积相等。我国领土的四端为:最东端在黑龙江和乌苏里江的主航道中心线的相交处(135°2′30''E),最西端在帕米尔高原附近(73°40′E),最南端在立地暗沙(北纬3度51分00秒,东经112度17分09秒)(英语:Lidi Ansha或Lydi Shoal)为中国南海南沙群岛区域的一座暗沙,是实际上的中国领土的最南端(非位于其东北约15海里的曾母暗沙)。按中华人民共和国行政区划,立地暗沙属于海南省三沙市管辖。最北端在漠河以北黑龙江主航道的中心线上(53°33′N,124°20′E)我国东西跨越经度60多度,最东端的乌苏里江畔和最西端的帕米尔高原高原相差5个时区。

对于中国古代的天文学系统,和西方相比也有自己的特色。中国天文学系统继承了中国哲学系统的天人合一的思想。举个例子,大熊座在中国的天文学中由北斗,文昌,三台三个星官构成。北斗都很熟悉,不多赘述了;文昌就是民间传说中的文曲星,掌管科举考试的天体;三台指的是在现实生活中的科举考试的三个阶段,乡试,会试和殿试三个阶段。完全不同于西方天文学天上都是神明,和人间无关。我个人喜欢使用中国天文学来对莫颗星命名,因为它很有文化内涵而且比较容易记。

但是中国天文学这套体系也制约了中国天文学的发展。比如日月食,根据立法预报它应该有啊,但是没有发生。如果在西方,恐怕是要对历法进行修正了。在中国呢,群臣向皇帝叩首,恭喜皇帝的大恩大德感动了上苍(即使姚崇也干过这样的事)。

5.有什么关于天文知识、宇宙知识的书啊

我推荐你这些都有很多,都是哈勃望远镜拍摄的,还有比较详细的说明,你自己可以去找一下,这一些都对星团,星系等有一个具体的介绍日本科普作家野本阳代的书《透过哈勃看宇宙。

宇宙遗产》《透过哈勃看宇宙。 无尽星空》《透过哈勃看宇宙、星之海洋》以上三本都有详细介绍星体的情况,我08年买过《透过哈勃看宇宙。

宇宙遗产》,大部分都是图,星系星团等等满详细的,还不错啊,强烈推荐 这里有这三本书的简介如果你是要月刊的话,观测一些主要星体的方法、事项。 可以去订购我国的《天文爱好者》虽然我没有买过,不过口碑还不错。

说下我常看的一些天文观测书吧。1。

《恒星和行星》(中国友谊出版社)里面全部都是,本书介绍了天文学的基本知识,太阳系导览,字母序的星座便览,以及按月份编列的每月观星指南等内容。 夜空的星星都记述的十分详细,也很形象,对我来说是一本挺不错的观测书。

2《。恒星 行星即查手册》这本没有上面那本详细,比较简略,本书介绍了关于恒星、星系的有价值的信息,给出了使用望远镜、天文望远镜及其它光学辅助仪器的建议,给出了天文学A列表中的50个天体的详细介绍以及各天体的星图。来源:----https://wzwebi.com/cshi/202501-213.html

也是一本挺不错的观测书希望对你有帮助来源:----https://nanren30.com/bkjj/202412-92.html

6.天文学常识性的知识,麻烦介绍一下

光 年:光每秒大约30万公里,一光年大约为9,460,800,000,000公里。

--------------------------------------------------------------------------------星等(视星等): 天文学上规定,星的明暗用星等来表示,星等数、越小,说明星越亮,星等数每相差1,星的亮度相差2.5倍。我们肉眼能看到的最暗的星是6等星。

天空中亮度在6等以上的,也就是我们可以看到的星有6000多颗。宇宙中的星体本身离我们很遥远,所以我们看到的星等并不是其真实的明度,而是有较大的差别,因此我们把眼睛观察所得的叫做视星等。

为了方便起见,我们把视星等一般就叫做星等。 --------------------------------------------------------------------------------黄 道 :太阳在天球上的周年视运动轨迹,称为“黄道”。

--------------------------------------------------------------------------------黄道十二星座: 为了确定位置的方便,人们把黄道划分为十二等份(每份相当于30°),每份用邻近的一个星座命名,这些星座就称为“黄道星座”或“黄道十二宫”。这样,相当于把一年划分成了十二段,在每段时间里太阳进入一个星座。

在西方,一个人出生时太阳正走到哪个星座,就说此人是属于这个星座的。 --------------------------------------------------------------------------------天 球 :天文学上为了与人们的直观感觉相适应,把天空假想成一个巨大的球面,这便是天球。

天球的中心自然就是我们地球,它的半径无穷大。这样,所有的天体在天球上的投影都有了因定的坐标。

天球只是人们的一种假设,是一种“理想模型”,引入天球这一概念,只是为了确定天 *** 置等方面的需要。(见下图) --------------------------------------------------------------------------------岁 差: 地球就象是一个旋转的陀螺,而陀螺在旋转时,它的轴并不是垂直于地面完全不动,而是在微微晃动,这种现象在物理学上称为“进动”。

地球也是这样,它的自转轴在天空中的方向是不断变化的,并不总是指向某一因定点,这就引起了“天极位置漂移”的现象。这在天文学上叫做“岁差”。

--------------------------------------------------------------------------------“天赤道”和“天极” : 天文学上,确定天 *** 置的方法与地球表面非常相似,也是通过经纬坐标系来实现。最常用而且最重要的天球坐标系,就是天球赤道坐标系。来源:----https://nanren30.com/cshi/202501-162.html

地球赤道所在平面与天球的交线称为“天赤道”,它就是赤道在天球上的投影;向南北两个方向无限延长地球自转轴所在的直线,与天球形成两个交点,分别叫做北天极和南天极。“天赤道”和“天极”是天球赤道坐标系的其准。

--------------------------------------------------------------------------------“赤经”和“赤纬” : 在天球赤道坐标系中,天体的位置用经纬度来表示,称作赤经、赤纬。我们知道,天赤道和黄道间有23°左右的“黄赤交角”。

这样,天赤道和黄道就有了两个固定不变的交点。其中,黄道自西向东从天赤道以南穿到天赤道以北的那个交点,在天文学中称为“春分点”,我们把通过这一点的经线定为天球赤道坐标系0°经线。

赤经不分东经、西经,它是从0°开始自西向东到360°,单位是时间单位时、分、秒,范围是0~24时。天球赤道坐标系的纬度规定与地球纬度类似,只是不称作“南纬”和“北纬”,天球赤纬以北纬为正,南纬为负。

--------------------------------------------------------------------------------流 星 雨 : 流星雨一般都跟彗星有关。彗星是很松散的天体,它在运行过程中,总会甩下一些尘埃、石块什么的。

因为地球的轨道和彗星轨道是相交的,所以每年的某段时间,当地球运行到交点附近的时候,就会把这些物质吸引到大气层中,这就开成了流星雨。

7.天文知识初学内容

天文学的起源可以追溯到人类文化的萌芽时代。

远古时代,人们为了指示方向、确定时间和季节,而对太阳、月亮和星星进行观察,确定它们的位置、找出它们变化的规律,并据此编制历法。从这一点上来说,天文学是最古老的自然科学学科之一。

古时候,人们通过用肉眼观察太阳、月亮、星星来确定时间和方向,制定历法,指导农业生产,这是天体测量学最早的开端。早期天文学的内容就其本质来说就是天体测量学。

从十六世纪中期哥白尼提出日心体系学说开始,天文学的发展进入了全新的阶段。此前包括天文学在内的自然科学,受到宗教神学的严重束缚。

哥白尼的学说使天文学摆脱宗教的束缚,并在此后的一个半世纪中从主要纯描述天 *** 置、运动的经典天体测量学,向着寻求造成这种运动力学机制的天体力学发展。 十八、十九世纪,经典天体力学达到了鼎盛时期。

同时,由于分光学、光度学和照相术的广泛应用,天文学开始朝着深入研究天体的物理结构和物理过程发展,诞生了天体物理学。 二十世纪现代物理学和技术高度发展,并在天文学观测研究中找到了广阔的用武之地,使天体物理学成为天文学中的主流学科,同时促使经典的天体力学和天体测量学也有了新的发展,人们对宇宙及宇宙中各类天体和天文现象的认识达到了前所未有的深度和广度。

天文学就本质上说是一门观测科学。天文学上的一切发现和研究成果,离不开天文观测工具——望远镜及其后端接收设备。

在十七世纪之前,人们尽管已制作了不少天文观测仪器,如中国的浑仪、简仪,但观测工作只能靠肉眼。1608年,荷兰人李波尔赛发明了望远镜,1609年伽里略制成第一架天文望远镜,并作出许多重要发现,从此天文学跨入了用望远镜时代。

在此后人们对望远镜的性能不断加以改进,以期观测到更暗的天体和取得更高的分辨率。1932年美国人央斯基用他的旋转天线阵观测到了来自天体的射电波,开创了射电天文学。

1937年诞生第一台抛物反射面射电望远镜。之后,随着射电望远镜在口径和接收波长、灵敏度等性能上的不断扩展、提高,射电天文观测技术为天文学的发展作出了重要的贡献。

二十世纪后50年中,随着探测器和空间技术的发展以及研究工作的深入,天文观测进一步从可见光、射电波段扩展到包括红外、紫外、X射线和γ射线在内的电磁波各个波段,形成了多波段天文学,并为探索各类天体和天文现象的物理本质提供了强有力的观测手段,天文学发展到了一个全新的阶段。而在望远镜后端的接收设备方面,十九世纪中叶,照相、分光和光度技术广泛应用于天文观测,对于探索天体的运动、结构、化学组成和物理状态起了极大的推动作用,可以说天体物理学正是在这些技术得以应用后才逐步发展成为天文学的主流学科。

8.古代文化常识天文地理的综合性学习

关于中国古代文化的结构分类,各家学派标准不同,分类也不同:有物质与精神两分法;有物质、制度、精神三分法;有物质、制度、行为、心态四分法;还有物质、社会、精神、艺术、语言、风俗六分法等。这些划分尽管层次不一,但都是按照人类创造文化的发展进程由物质到精神、由感性到理性的层次划分的,适用于专业人员的学习研究。中学生学习教材中的中国古代文化,应根据教育功能的不同来划分。

中学语文教材中涉及的古代文化知识,它包括天文、地理、文学艺术、哲学宗教、政区历法、军事刑律、阴阳五行、家族礼法、音乐美术、饮食服装、车马冠盖、文化奠基、政治经济制度、明君贤相的治国方略,以及价值观念、道德情操等等,但由于教材中没有专门论述中国古代文化知识的课文,这些知识都零散地分布在古文典籍之中,教师教学难,学生学习更难,因此,教学时应将分散的古代文化知识根据教育的功能不同梳理归类,每一类下分若干知识点,以课文中的某一古代文化知识点为突破口作分析,成扇面辐射展开,拓宽范围并向纵深发展。然后再探讨下一个知识点。这样做有三个好处:一是将课文中零散的知识归类成系统,建立知识链条。二是教师们在传播零散的古代文化知识时可以采用专题讲座的方法。三是给学生提供一种研究性学习的方法,打开思路,养成良好的治学习惯。

9.中国古代文化常识天文部分读后感400字

《中国古代文化常识》读后感

因为在做关于《节日文化资源在语文教学中的合理运用研究》这一课题,所以最近多接触关于传统文化、中外文化、节日文化等类似的书籍,而我对传统文化尤为感兴趣,所以就打开了王力主编的《中国古代文化常识》这本书,徜徉书中,趣味多多。

读传统文化的书一般都感觉比较枯燥晦涩,甚至会有大量的生僻字不知其音其意。这本书涉及天文地理、衣食住行,传统文化涵盖面之广自不用说,且文笔风趣诙谐,插图精美,图文结合,穿插故事、文献等,配有相关注释,读来不觉无味深奥,通俗易懂,趣味横生。书中的插图,或是关于器皿,或是关于建筑,或是关于丝帛……线条清晰,真实可感,触摸上去好像在和中国古代的这些精品做最亲密的接触,不禁感慨传统文化的美好和厚重。

本书简介中就是一连串的发问“你知道知名的司母戊鼎有一个假耳朵么?你知道孟姜女姓姜不姓孟么?你知道最古老的同心结是什么样子么?你知道黄帝战蚩尤的真相么?”……真想做一位学识渊博、旁征博引的老师,如果真能在语文教学中,必要之时,将这些知识、故事、文献信手拈来,延伸引用,我的课堂肯定颇受欢迎吧。作为一名语文老师,是需要汲取多方面的知识,提高自身的文学修养,才能给予学生最好的文学渗透。

关于传统节日书中也有涉及。比如中元节是中国人非常重要的祭祀去世亲人的节日,又叫“盂兰盆节”或“河灯节”。盂兰盆是梵文音译,原意为“从苦难中拯救”来源:----https://wzwebi.com/cshi/202412-75.html。这个故事和目犍连(也就是中国民间目连戏的男主角目连)救母的故事有关。传说释迦牟尼的十大弟子之一目连成就神通后,欲度化父母,以报生养哺育之恩。结果送给母亲的饭食一递到母亲手上就化成火炭。佛陀说每年七月十五日,是佛欢喜日,我们都要集结佛法僧三宝的力量,超度我们的七世父母。这个故事的内涵,其实还远比它表面上看要来得深刻。实际上,佛教界内的人大多认为盂兰盆的故事讲的就是小乘佛教向大乘佛教转化的原因。

其实中国古代文学作品,尤其是诗词小说中关于中元节的描写并不少。中元节作为寄托哀思,为已逝亲人祈福的传统节日,历史甚至比清明节更为悠久,意义也不在清明节之下。它已被列入民俗项目类别的非物质文化遗产,各地均有不同的民俗活动,类似的传统节日还有上巳节和寒衣节。

仅以中元节为例,关于节日文化资源在语文教学的运用需要筛选、提取、比对、舍弃。关于节日文化中的消极思想是糟粕,需要摒弃,涉及的诗词文化、哲学思想、节日意义则是精华,可以酌情保留来源:----https://wzwebi.com/cshi/202501-167.html。同一节日的不同资源需要深思熟虑,找准切入口;不同节日的文化资源,也要需要对比和取舍。这要看这种节日文化资源在语文教学中是否必要,是否有意义,是否有积极意义。这是一个长期研究和思考的命题。

我看《中国古代文化常识》,与其说是研究,更像是一种“扫盲”,中国传统文化博大精深、意蕴深刻,真正感悟绝非一朝半夕之事。了解未知领域或不精通的领域,是一种自我学习和修养的过程。读书多一点,发现多一点,懂得多一点,仅希望在具体的教学实践中或课题研究中有所价值,有所运用。这是一种责任,需要坚持。

分享评论 |

关于天文知识

1: 天文学是…研究宇宙中一切物体(除了地球)的自然科学的一个分支。但是,天文学家确实也研究太阳和地球高层大气的作用,包括极光等。

2 大部分天文学家其实是天体物理学家。直到19世纪后期,天文学是很难描述和计算的。天文学家通过望远镜给天体照相并计算一些像日月蚀,行星的位置,恒星的位置和距离。尽管如此,天文学家是缺少对恒星物理性质和主宰它们为什么发光、怎样演化的物理机理的真正了解的。从那以后,我们在原子结构和物质作用知识上的突破使得天文学家通过物理规律的大方面应用而发现了宇宙的内在工作机制。这样,今天的大部分天文学家实际是天体物理学家并在做天体物理。这一头衔可以在鸡尾酒会上给人留下深刻印象。

3 天文学家大体上可以分为观测天文学家和理论天文学家。虽然一些人两方面都做,大部-分人更适合其中之一。尽管观测天文学家不必要整天埋头观测,他们要进行望远镜和仪器(如相机,光度计,光谱仪等)的研究设计来获得和分析宇宙天体的数据。另一方面,理论天文学家典型的是应用超级计算机建立模拟宇宙现象的模型。

4 观测天文学家和理论天文学家的工作经常是互相补充的。有时,观测天文学家会发现宇宙中无法解释的现象而理论天文学家会试着用数学和已知物理规律来解释观察到的东西。还有时,理论天文学家会发展一种理论预示了宇宙中某种现象或某种物理条件存在而观测天文学家会试着通过观察验证这种理论对不对。第一个例子是脉冲星的发现和后来的中子星理论。第二个例子是黑洞存在的理论假设和接着黑洞被真正发现。

5 总体来讲,研究宇宙是一件令人气馁的被动的活动。物理学家、化学家、生物学家有一个共同点:他们可以钻进实验室或到达目的地有效的创造出他们要研究的现象。他们可以接触到它,操作它,直接的和它们联系。问一个物理学家一个物质有多重,他们可以放在秤上称并马上读出来。问一个化学家一个反应放出多少热,他可以用温度计测出来。问一个生物学家一个血样有什么遗传特征,他可以立刻进行一系列小心的检测。对于天文学家来说整个宇宙就是一个实验室。但是,宇宙,用定义说就是“延展在那儿”的远在我们直接接触范围之外的所在。天文学家虽然可以测出一颗恒星离我们的距离,但是他不能用一盒卷尺去测量来验证这个距离。天文学家想知道太阳表面的温度,但是他不能去太阳那儿插一个温度计。天文学家想知道一个遥远星系的组成,但是他不能去那儿采样再运回地球分析。然而我们确实知道恒星的距离,太阳的温度,遥远星系的组成。这就是天文学为什么是一个如此令人着迷的领域,是一件对人类思想创造性灵活性有如此贡献的礼品。

6 天文学家通过收集分析宇宙天体的光和其它波段辐射研究宇宙。天文学家不能去宇宙中大部分的行星,恒星,和星系。取而代之,他们通过天体发送给我们的信息研究宇宙。能够携带信息给我们的就是光和其他波段辐射。这样天文学家主要通过天体辐射,研究宇宙天体(由物质构成)。很快我们就会谈到辐射。你也会在本章末找到关于物质的部分。

7 光学望远镜是一件通过聚光使我们可以看到比我们只用肉眼看到的更弱物体的设备。望远镜的原理本质上是相同的。进入望远镜的光被一系列的透镜、面镜不断聚焦成更细的光柱。因为光和辐射是天文学家研究宇宙的手段,所以越多的辐射被收集,能了解的信息就越多。

8 有两种基本的光学望远镜类型。大部分不是折射望远镜就是反射望远镜。

9 折射望远镜用透镜系统聚光。小的时候大部分人有这样的经验,在晴天我们用放大镜点燃一片树叶或纸。这个实验的原理就是放大镜把表面的光聚焦成一点,使这一点的温度特别高,即光度特别大。一架折射望远镜用透镜组完成同样的事情。在折射望远镜大的一端有两片大小相等但不同类型的镜片。当光通过它们,它们共同工作把光聚焦在望远镜筒另一端。在这一点,不管望远镜指向哪里都会成像。

10 反射望远镜用一面或多面反射镜完成相同的事情。在一架简单的反射望远镜中,遥远光束落在反射镜上。这面反射镜不是平的,它是凹面的。结果就会产生聚焦的效果。一种具体的形状是抛物面,可以使平行光轴的入射光聚焦在同一点。像折射望远镜一样,遥远物体在这一点成像。

11 一种简单的普通的被广大天文爱好者喜爱的反射望远镜是牛顿发明的。这一款今天被称为牛顿式反射望远镜的设计,在镜筒一端用凹抛物面集光聚焦。为了观测者方便,在镜筒里面另一端放置一块平面镜把光反射到镜筒侧面安装目镜的地方。许多天文爱好者都有这种设计的望远镜。

12 口径几到几十厘米的折射望远镜比反射望远镜昂贵。比如,平均15厘米的反射望远镜要几百美元,而15厘米的折射望远镜要几千美元。原因是这种大小下,磨制天文观测使用的反射镜比磨制透镜系统便宜。

13 对于需要便携性的爱好者来说,折射望远镜和牛顿反射式都是笨重的。一个典型的10英寸的牛顿反射式大约6到7英尺长100多磅重,而一个6英寸的折射望远镜就有这样大。很清楚,除非你有固定的场所安装这些设备,否则你要面临运输的困难。

14 另一种被称为施米特—卡塞格林的望远镜设计提供了一个有趣的优点。它是用反射镜和透镜的结合。口径几到几十厘米大小的施米特—卡塞格林式远比牛顿式昂贵但比纯折射的便宜,并且有着当牛顿式性能相近镜筒只有其三分之一长的优点。这样,施米特—卡塞格林式更便携且可以放在一个小的因而便宜的地方。因为它短,在有风的时候晃动的就很少来源:----https://wzwebi.com/zhishi/202412-139.html。这是很重要的,因为望远镜的放大作用,即使很小的微风引起的震动在望远镜的像上也会产生很大的晃动。

15 我们看到最暗物体的下限取决于有多少光进入我们的眼睛而被聚焦。我们能看到东西因为光通过瞳孔被眼内的透镜系统聚焦在视网膜上成像,信号再被送到大脑。越多的光进入眼睛,越多的光落到视网膜上,越强的信号被送到大脑,就感到物体越亮。当我们刚进入一个黑屋子或刚从明亮的环境走到户外,我们感觉到什么都看不见。但当眼睛“适应”后,就可以看的更清楚了。适应是指瞳孔逐渐变大允许更多的光通过。尽管如此,还是有一个极限,能看多暗取决于瞳孔最大能变多大。

16 望远镜能让我们看到更暗物体是因为它们让更多的光进入我们的眼睛。即使在最暗的条件下,平均来说,认得瞳孔不能扩张大于8毫米。所以我们只能看到最暗和通过8毫米见方的光通量呈正比亮度。但是望远镜可以使我们欺骗大自然而把更多的光聚焦成适合瞳孔大小的光柱。用你的裸眼去看星空,你只能用瞳孔的8毫米见方集光。用望远镜看星空相当于用250毫米见方的透镜或面镜集光,这样相当于有了直径250毫米的瞳孔。这就怪不得望远镜能让我们看到宇宙中远比用裸眼看的暗的多的东西。理解这一基本原理你就明白能给我们揭示迄今为止都为尽知的宇宙的望远镜的神奇魔力了。我们将要看到,专业天文学家并不用眼睛而是用远比眼睛客观的仪器接受信号。但是位置是一样的。

17 天文学家倾向用主镜的口径称呼一架望远镜。天文学家倾向用“36英寸”或“2.4米”称呼一架望远镜。这样做的时候,他们使用英尺或米作单位指出望远镜主镜的直径。主镜通常被称为物镜。

18望远镜能够给我们看更远更暗天体的能力取决于主镜的面积。虽然天文学家用目镜的直径称呼望远镜,但望远镜聚光的能力正比于目镜的面积而不是起直径。根据圆面积公式,10英尺的望远镜实际上比5英尺的望远镜多聚4倍的光。望远镜聚集光的能力有时被称为聚光能力。但是这和望远镜的放大率没有任何关系。

19 为了放大望远镜中的像,你需要一个目镜。天文爱好者买的望远镜大多带有一组分类的目镜。每一个目镜典型的是一个小的包含透镜系统的圆柱。不同的目镜得到不同的放大率。

20 为了计算出一个特定目镜下一架特定望远镜的放大率,你必须理解焦距。每一个望远镜物镜和目镜有一个所谓的焦距。它其实是一个距离,通常用毫米衡量。(1英寸等于25.4毫米)如果你曾经用放大镜烧过树叶,放大镜镜片和燃烧物之间的距离就是焦距。换句话说,它就是透镜和来自遥远的光(此处是太阳)会聚的点。目镜的焦距通常写在目镜筒的侧面或末端,物镜的焦距经常包含在望远镜的文献里。

21 计算放大率,你要做的只是一个除法。当你在望远镜上插入一个特定的目镜需要计算它的放大率时,你要做的只是用物镜的焦距除以目镜的焦距。例如,一架望远镜物镜焦距是2540毫米,你插入了一个焦距25.4毫米的目镜,它的放大率是100。这样,意味着当你通过这架观测时,你会看到比你用裸眼近100倍或大100倍的物体。

22 理论上,用任一架望远镜可以得到任一放大率。为了得到更大的放大率你要做的只是选用越来越短焦距的目镜。这样,如果25.4毫米焦距的目镜得到100倍放大率,那么一半焦距的目镜,即12.7毫米,再同一望远镜上可以得到200倍的放大率。6.35毫米焦距的目镜可以得到400倍的放大率。理论上你可以一直这样做下去直到百万倍的放大率或者更多。但是这里面有一个问题,那就是……

23 望远镜的有用放大率。必须要记住的是目镜放大的是通过物镜的经聚焦形成的像。所有的目镜要利用这个像来放大因此就有一个限制,即在多少光的总量下能有效的工作。简而言之,目镜接受越多的光,它就可以把像放的越大并仍能在你眼睛的视网膜上产生足够明亮和清晰的像。换而言之,对于特定的望远镜,你把像放到多大仍然可以看到足够清晰明亮的像有一个实际的限制。超出这个限制就会得到不好的结果。随着越来越大的放大率,你确实得到越来越大的像,但它会变的更暗,更模糊。实际上你很难看到细节。所以远比“这架望远镜放大率是多少?”重要的问题是“这架望远镜的最大有用放大率是多少?”

24 一架特定望远镜的有用放大率的值取决于主镜的尺寸大小。虽然一架望远镜有用放大率会取决于很多因素,包括望远镜的光学质量,某个晚上地球大气的稳定程度。为了得到大约的最大有用放大率,你应该找到一架望远镜,以英寸为单位测出其直径再乘以40。因此,30英尺的望远镜在大多数晚上可用的最大放大率大约3*40=120(也写成120X),6英寸的在同一晚上在放大率是6*40=240时可以看到相同清晰明亮的像。因此,尽可能买佩有最大物镜的望远镜是值得的。

25 有时选用较低放大率比选用最大放大率明智。低放大率目镜会得到较小的像,但是像更尖锐更明亮。大多数情况,这会更适于眼睛。并且,对于某些比较大的天体,比如星团,彗星,月亮,宽视场低放大率的目镜能得到更好的图像。

26 双筒望远镜对于简单享受天空的乐趣来说可以算是非常令人满意的工具了。为了坚持“物超所值”的信条,双筒望远镜是我们能满足从望远镜里看天空的可以负担的起的一个选择。尽管双筒不能提供给你一般望远镜可以提供的月球和行星的细节,但是你只是躺下来随便扫过星空,它们已经是非常美妙的了。另外装备了双筒以后,你可以享受很多美妙的时刻,比如顺着银河巡航来找你可以在本书看到的星云和星团,也可以观察双星,月蚀和不期而遇的彗星。

27 双筒上的数字告诉你它的大小和放大率。双筒经常是用两个数字和一个×来描述的,如7×35或10×50。两个数字中的第一个数字表示双筒的放大率,第二个数字用毫米表示双筒主镜的口径。因为25毫米约等于一英寸,一只10×50 的双筒有一个50毫米或两英寸的物镜和10倍的放大率。

28 晚上用一只7×50的双筒是一个很好的选择。很多人感觉7×50的双筒可以比7×35的双筒(经常用在白天观看体育赛事上)提供更强的聚光能力,但是并不比更大放大率的双筒笨重麻烦。可以给我们提供银河壮观景象的更高放大率更大口径的双筒最好是用三角架支撑它们的重量使其稳固。

29 更高质量的折射望远镜和双筒使用镀膜的镜片。这些化学涂层使镜片看起来发蓝,它们减少内部的反射从而使仪器产生完美像质。

30 天文业余爱好者通常可以告诉你他们正在使用的望远镜的放大率,而专业天文学家不是这样思考问题。放大率是专业天文学家一般不在意的问题。那是因为专业天文学家通常从望远镜上拿下目镜,用望远镜上其他光学器件把光聚焦到CCD 上,就像被用作一架照相机或光度计的一部分或一台光谱仪。这样的话,专业天文学家感兴趣的是像的大小,能够看到的细节程度,和能够到达CCD的光波长或颜色。

31 专业天文学家更感兴趣的是望远镜的分辨率而不是放大率。分辨率指的是一架望远镜理论上让你看到细节的优良程度。细节的优良程度可以这样说,你能看到多小的物体,或者说两个物体靠的多近时仍然可以被分辨。望远镜的分辨率是以角秒来衡量的。

32 一架望远镜的理论分辨率很容易计算。一架以角秒衡量的光学望远镜的理论分辨率可以很容易的以13除以这架望远镜的以厘米衡量的主镜的口径来计算。(2.54厘米等于一英寸)这样一架100英寸(254厘米)的望远镜理论分辨率约为0.05角秒。一架200英寸望远镜理论分辨率约为0.025角秒(只有满月直径的1/36000)。换句话说,第二架望远镜可以分辨只有0.025角秒的天空中的两颗星。而100英寸的望远镜只能把它们看成一颗星来源:----https://www.62v5.com/cshi/202501-198.html。尖锐的像是高质量的像,因此天文学家希望得到最好的分辨率。这是另一个天文学家垂涎尽可能大的望远镜口径的原因。

33 你好,某某?请给我一张星图。就像有德克萨斯和阿富汗的地图,也有天空的地图。它们曾经是用手画的,但是现在天文学家主要依靠的是照片或计算机图像。其中一个范围最广的这类照片和图像由加利福尼亚进行的帕洛马天文台巡天和智利欧洲南方天文台进行的南半球巡天联合组成。几百幅图像显示了整个天空暗至20等的恒星。另一个范围广的星图是为哈勃空间望远镜编得导星目录表。它包括了暗至15等的超过一千五百万颗的恒星,只能从大容量的CD-ROM里得到。在观测以前,天文学家可能会扫一眼它需要的目标周围的较显眼的恒星,这样就可以作为他它需要的目标的路标。

34 天文学家用一套类似于地理经纬度的方法定位天空中的物体。就像地球上的物体可以用经度和纬度指明一样,天空中的任何一个物体可以用一套类似的坐标系统指明,在这个系统中赤纬代替了纬度,赤经代替了经度。

35 赤纬以度数衡量。在天球坐标中和地球赤道平行的大圆叫做天赤道。就像纬度一样,如果一个物体位于天赤道以北,就说他有正的赤纬。类似的,在天空中天赤道以南找到的物体有负的赤纬。到北或南的距离用度数角分角秒衡量(和纬度一样)。

36 赤经用时间的单位衡量。赤经坐标在天空中向东衡量。像经度也应该有一个零点。就像零度子午线穿过英国格林威治,天空中的零度子午线是穿过春分点的子午线,一个天体的赤经是地球从这条零度子午线在正南方时起自转到所求天体在正南方时止的时间长度。这样,天体的赤经就以小时、分钟和时间上的秒来衡量。

37 星图一般包括所含宇宙天体的坐标。就像地图一般在边上标出经纬度一样,星图一般在其所描绘的区域标出赤经赤纬。天体的表和目录一般也列出每一个天体的坐标。赤经(right ascension)一般缩写为R.A.;赤纬(declination)一般缩写为Dec.。这样,例如冬季星空中最灿烂的天狼星可以在天空中R.A.6h14m,Dec.-16°35'找到。而夏季星空中最亮的织女星位于R.A.18h34m,Dec.+38°41'。这些坐标就像经纬度能够定为洛杉矶或海上的一条船一样方便精确的定位出天上星星的位置。

38 相对于恒星运动的天体天球坐标不断改变。因为太阳月亮和行星相对于恒星不断运动,它们的赤经赤纬也在不断改变。这样,列出他们的位置的表每晚都需要改变。对于哪些是运动特别大的天体,比如月亮,有时需要列出起每小时的坐标。

39 天文学家为什么需要这样一个坐标系统?他们不能只是把望远镜指向他们想看的地方,就像你使用你的双筒?有很多这个系统必须的原因。首先,很多专业望远镜有上吨重,很难以转动。第二,望远镜通常放在只允许看到一条天空的天文台里,天文学家通常看不到全天情况。第三,天文学家选用的目标星通常太暗了,肉眼没法看到。第四,如果在德国的一个天文学家想告诉在智利的同伙把望远镜只向他们感兴趣的一颗星,他不能只是说,把望远镜指向那儿。这没有任何意义。

40 许多望远镜都是计算机辅助跟踪,指向天文学家想要研究的天体的正确的赤经赤纬。许多专业望远镜甚至一些爱好者的镜子都是计算机控制,自动移动指向正确的天球坐标的。近些年来,一些爱好者装备的计算机甚至事先装载了包括行星以及亮的恒星和其它一些好看的星团星云星系的坐标的软件。只要输入你想要看得天体名称,按一个按钮,望远镜会为你找到它。

41 天文学家不喜欢闪烁的星星。漫天闪烁的星星是一个很浪漫的景象。但讽刺的是,它是天文学家害怕的事情。那是因为当恒星闪烁时表明地球大气状况很糟。只有当地球大气干净稳定时望远镜才能产生天体非常清晰的像。但是有时地球大气极不稳定,表明大气中有无数不断移动的湍流。这时透过大气观察天体就像透过一条干净的急速流动的小溪看底下的东西。小溪底下的物体像是不断的波动,被水的湍流扭曲。同样的,大气湍流也把穿过它的光线折射扭曲了。对于裸眼,这些不稳定的大气是星星不多闪烁。望远镜使问题更复杂了,因为在放大天体像的过程中,它也放大了大气的扰动,是星星的像弥散成一个不断变换大小和形状的光斑。天文学家把大气不稳定的夜晚称为大气的视宁度不好。这样,一架望远镜在某一夜晚的分辨率比起其本身的尺寸跟依赖于大气状况。来源:----https://www.62v5.com/cshi/202501-155.html

42 天文学家通常试图把天文台建造在有更长时间大气视宁度的地方。选择天文台新台址的最大考虑是一个地方大气稳定性或说好的视宁度的持续性。这样的地方通常选在盛行风从比较平坦的地形或海洋上吹来的较高的山峰上。如此平坦的地形产生的空气流动可以保持光滑平行,从而只有尽可能小的垂直运动。这样,比如Kitt峰国家天文台位于较平坦的亚利桑那沙漠上几公里高的山峰上。世界上最好的一些天文台位于像夏威夷的一座名叫莫那克亚的死火山和智利安第斯山脉一系列的山峰上,这些都在于这些地方的向风面是一望无际的海洋。然而尽管在如此理想的地方,一些大望远镜的分辨率很少超过1角秒。

43 为了找到建造天文台的地方,天文学家也在寻找最晴朗的地方。可以理解,天文学家不仅希望找到大气稳定的地方,它们也希望找到最晴朗的地方。这当然意味着每年有尽可能多的无云日。夏威夷的一些地方覆盖着热带雨林,但是在13000英尺以上,莫那克亚的最高峰如此之高,除了偶尔的大雪,它已超出了“气象带”。智利的那些天文台在干燥的沙漠之上,一年也可能见不到一滴雨。

44 另一个选择台址的重要因素是远离污染。这看起来也很明显,但当说到污染,光学天文学家关心的不仅仅是空气中没有那些化合物。他们关心的是另一种形式的其他他人没有想过的污染,光污染。城市里发出的灯光和车灯光射向天空洗去了暗星河银河的光,使得一些天文研究除了在郊区实际上无法进行。向曾经是20世纪天文研究重地的威尔逊山和帕洛马山,已经因为来自洛杉矶和圣地亚哥等大城市的光污染逐渐变得不能用了。甚至Kitt峰也日益受到图森不断膨胀的人口的威胁。天文学家已经搬向更远的像在夏威夷和智利的山峰。

45 大众可以帮助减少光污染。不需要减少晚上街道和高速公路需要的安全照明量,政府和大众可以采取一些简单的不需增加负担的措施而显著的减少它们产生的光污染。仅仅在路灯上加上灯罩和使用不同的光给高速公路照明可以使我们重新拥有不仅是对天文观测至关重要的也是不断减少的自然资源的美丽星空。想要学习大众应该怎样做,请联系:

Dr.David Crawford

Dark Sky Association

3545 Stewart Street

Tucson,Arizona 857161来源:----https://wzwebi.com/cshi/202501-219.html

46 当我们谈到宇宙研究时,我们需要注意更多我们的眼睛可以注意的东西。有时天空看起来非常的晴朗但对于某些天文研究却不能接受。对观测光学这一精确测定天体视亮度的天文分支尤其正确。例如,实际上对裸眼来说不可见的一块非常薄的云,在这样的仪器里产生非常大的波动致使数据报废。

47 能造多大的望远镜有着技术上的限制。望远镜的主镜越大,它成的像越亮越尖锐。那么为什么不简单的用一块巨大的镜子呢?问题就在于造这个镜子的物质有一个承受力的极限。为了使望远镜的透镜或凹面镜能精确的把光聚成一个清晰的像,透镜或凹面镜的镜面必须有精确到几百万分之一英寸的只有光波长的几分之一的镜面形状。现代磨制镜面的工艺可以达到这样的精度,但是镜面重到一定程度以后会在自身的重力下变形来源:----https://www.62v5.com/cshi/202501-233.html。变形量不能达到眼睛看到的程度但是足够把光扭曲到不能精确成像。

48 世界上最大的折射望远镜在威斯康星,最大的反射望远镜在俄罗斯。(截止到2006年,最大的反射望远镜是欧洲北方天文台的GTC望远镜,口径11.5米——空间天文网注)世界上最大折射望远镜主镜口径有1米。它位于威斯康星州芝加哥大学管理的叶克斯天文台。1948年,加利福尼亚帕洛马山上直径5米的反射望远镜落成。几十年内它始终是世界上最大的。直到20世纪70年代,高加索山脉的一座6米的反射望远镜才落成,但是不幸的是它的光学系统始终不是太好。

49 新材料和新技术导致了更大望远镜的出现。20世纪80年代一项令人激动人心的望远镜设计技术的进步是天文学家否认了原来认为的光学望远镜尺寸有限制的想法。这一理念包括把几个单独的镜片合成一个望远镜并使它们单独接收到的光产生一个联合的像。这样的方法使单独镜片的总面积等效于整个它们联合起来的面积。夏威夷莫那克亚山上的凯克望远镜用36块直径1.8米的镜片拼在一起。1990年首次进行测试,1996年放在它旁边的双子镜(凯克2)开始加入。更大的多镜面望远镜设计正在进行中。

50 其它的望远镜设计用激光和计算机征服自然。在一个被称为自适应光学的研究领域,科学家正在调查利用激光不断探测望远镜上空的大气并且把信号传给计算机控制的支持主镜的马达使其精确的改变主镜的形状来抵消大气湍动的变化。如果成功的话,这种望远镜可以达到前所未有的清晰度。

▲宇宙有限无边[就像地球的表面,有一定的大小(即有限),但没有边。而宇宙也是一样,是有限的,但是宇宙自身的引力太大了,以至于把宇宙中的空间弯折回自己自身(就像一个圆,只不过是四维的)。]

▲宇宙之外没有物质(包括时间、空间、光…),所以没有任何“东西”。

但有些科学家认为,我们的宇宙外还有其他“宇宙”。

▲比太阳质量大100倍以上的恒星燃料耗尽时,自身巨大的引力将自身的体积压缩到“0”,这个点的密度就无限大,引力也极大,甚至能够把空间弯曲、吸引光、电和信号等一切物质(这个点被称为黑洞)。

▲首先说明:物质的运动速度只能≤光速,可由时间膨胀公式(《相对论》)得出。

因为物质的运动速度只能≤光速,所以当它的速度接近光速时,只有时间变慢才能将它的速度永远保持在光速以下,当速度=光速时,时间停止。

理解:当运动物体的速度接近光速时,时间变慢,这样静止物体的时间(相对于运动物体)如果过了50年,那么运动物体的时间(相对于静止物体)可能只过了1秒,那么静止的人比运动的人老了50岁。(运动物体的时间极慢,慢到1秒钟相当于50年的长度。)

关于“我知道的天文小知识”这个话题的介绍,今天小编就给大家分享完了,如果对你有所帮助请保持对本站的关注!