网上有关“如何看待一个科学理论“战胜”另一个科学理论”话题很是火热,小编也是针对如何看待一个科学理论“战胜”另一个科学理论寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。
这是一个艰深、广阔的科学论题,无法用三言两语讲清楚。我们将主要以“欧洲近代科学”完胜“希腊古代科学”的真实历史案例,来简要阐述这个课题。
“伽利略物理学”提出只有物体的加速运动才需要受到力的维持;而物体的匀速运动不需要力的维持的惯性运动理论。从而一举颠覆了“亚里士多德物理学”认为物体匀速运动需要力的维持的理论。一个科学理论“战胜”另一个科学理论,就是立足科学实验这个试金石去检验。当然,这还远远不够。
比如,“牛顿日心说的太阳系天文学”战胜“欧多克斯地心说天文学”(托勒密完善了这种理论) 。这两个理论都可以做到用科学实验这个试金石去检验它们的正确性,两个理论给出的预测数据都能和实际天文观测数据严格吻合。这时,“实践是检验真理的唯一标准”的教条就失效了!这时,就是比较它们二者的理论谁才是具有更大的普适性,而不是仅仅局限于天文学中的太阳系的运动规律的有效性。牛顿的墓志铭是:“他用上帝一样的思维,第一个诠释了天上行星的运动和大海的潮汐”。“牛顿日心说的太阳系天文学”不仅能够预测天上的行星运动周期;还能预测地下大海潮汐的运动周期。而“欧多克斯地心说天文学”只能预测天上的行星运动周期;却无法预测地下大海潮汐的运动周期。后者没有前者的普适性大,所以,“牛顿日心说的太阳系天文学”才能因此可以战胜“欧多克斯地心说天文学”。也正因为如此,我们把“牛顿日心说的太阳系天文学”看成是描述自然界的客观的一种真实几何学;而把“欧多克斯地心说天文学”看成是纯粹的一种理解自然界的人为主观上的一种数学几何学。
到了20世纪,随着相对论和量子物理学的发现和创建,尤其是人类在20世纪50年代美国率先创造了第四次浪潮的“信息文明”时代,计算机学成为所有学科的领袖学科,历史性地取代和颠覆了近代传统科学的领导地位。继而使得“欧多克斯地心说天文学”这种纯粹是数学方案,成为领导信息界、科学界和工业界主流发展的大方向和大趋势。这种纯粹的数学模型理论,不再需要预先知道任何科学定律和物理方程式,就能够比那种物理学给出更好的预测数据,而且一般都能和实际观测数据严格吻合。相反,物理学甚至常常连理论数据都无法给出来。尤其是那些数学建模动力学,数学混沌动力学,数学计算流体力学,……,等等,它们研究研究分数维数空间和无理数维数空间,所谓无限长的曲线围成一个有限的面积;无限大的面积包围一个有限大的体积,处处连续而处处没有导数的奇异数学模型,……,等等,都能非常圆满地完成现实信息业、工业、经济业、……、各行各业的现实急需。而这一切,一概都是物理学和科学所望尘莫及的!
维科的维科的“论题法”及其思想谱系
1非欧几何的发展史
1、1问题的提出
非欧几何的发展源于2000多年前的古希腊数学家的欧几里得的《几何原本》.其中公设五是欧几里得自己提出的,它的内容是“若一条直线与两直线相交,且若同侧所交两内角之和小于两直角,则两直线无限延长后必相交于该侧的一点”、这一公设引起了广泛的讨论,因为它不如其他公理、公设那样简明,欧几里得本人也不满意这条公设,他在证完了所有不需要平行公设的定理后才使用它,怀疑它可能不是一个独立的公设,或许能用其它公设或公理代替,从古希腊时代开始到19世纪的2000多年来数学家们始终对这条公设耿耿于怀,孜孜不倦的试图解决这个问题,数学家们主要沿2条研究途径前进:一条途径是寻找一条更为自明的命题代替平行公设;另一条途径是试图从其他9条公理、公设推导出平行公设来,沿第一条途径找到的第五公设最简单的表述是1795年苏格兰数学家普雷菲尔(J,Playfair1748—1819)给出的:“过直线外一点,有且只有一条直线与原直线平行”也就是我们今天中学课本里使用的平行公理,但实际上古希腊数学家普罗克鲁斯在公元5世纪就陈述过它.然而问题是,所有这些替代公设并不比原来的第五公设更好接受,更“自然”.历史上第一个证明第五公设的重大尝试是古希腊天文学家托勒玫(Ptolemy,约公元150年)做出的,后来普罗克鲁斯指出托勒玫的“证明”无意中假定了过直线外一点只能作一条直线与已知直线平行,这就是上面提到的普雷菲尔公设.
1.2问题的解决
1.2.1非欧几何的萌芽
沿第二条途径论证第五公设的工作在18世纪取得突破性进展.首先是意大利人萨凯里(Sacchairn1667—1733)提出用归谬法证明第五公设,萨凯里从四边形ABCD开始,如果角A和角是直角,且AC=BD,容易证明角C等于角D.这样第五公设便等价于角C和角D是直角这个论断.萨凯里提出另2个假设:(1)钝角假设:角C和角D都是钝角;(2)锐角假设:角C和角D都是锐角.最后在锐角假设下,萨凯里导出了一系列结果,因为与经验认识违背,使他放弃了最后结论.但是从客观上为非欧几何的创立提供了极有价值的思想方法,开辟了一条不同于前人的新途径.其后瑞士数学家兰伯特(Lambetr1728—1777)所做的工作与萨凯里相似.他也考察了一类四边形,其中3个角为直角,而第5个角有3种可能性:直角、钝角和锐角.他同样在锐角假设下得到“三角形的面积取决于其内角和;三角形的面积正比于平角与内角和的差.他认为只要一组假设相互没有矛盾,就提供了一种几何的可能.著名的法国数学家勒让德(A.M、Legendar1752—1833)对平行公设问题也十分关注,他得到的一个重要定理:“三角形内角之和不能大于两直角”,这预示着可能存在着一种新几何,19世纪初,德国人萨外卡特(schweikart1780—1859)使这种思想更加明朗化,他通过对“星形几何”的研究,指出:“存在两类几何:狭义的几何(欧氏几何)星形几何,在后一个里面,三角形有一个特点,就是三角形内角之和不等于两直角”,
1.2,2非欧几何的诞生
前面提到的一些数学家尤其是兰伯特,都是非欧几何的先驱,但是他们都没有正式提一种新几何并建立其系统的理论,而著名的数学家高斯(Gauss1777—1855)、波约(Bolyai1802—1860)、罗巴切夫斯基(Lobatchevsky1793—1856)就这样做了,成为非欧几何的创始人,高斯是最早指出欧几里得第五公设独立于其他公设的人,早在1792年他就已经有一种思想,去建立一种逻辑几何学,其中欧几里得第五公设不成立.1794年高斯发现在他的这种几何中,四边形的面积正比于2个平角与四边形内角和的差,并由此导出三角形的面积不超过一个常数,无论其顶点相距多远.后来他进一步发展了他的新几何,称之为非欧几何.他坚信这种几何在逻辑上是无矛盾的,并且是真实的,能够应用的,为此他还测量了3
个山峰构成的三角形内角,他相信内角和的亏量只有在很大的三角形中才能显露出.但他的测量因为仪器的误差而宣告失败.遗憾的是高斯在生前没有任何关于非欧几何的论著.人们是在他逝世后,从他与朋友的来往函件中得知了他关于非欧几何的研究结果和看法.
2非欧几何发展史的启示
非欧几何的诞生,是自希腊时代以来数学中一个重大的革新步骤.在这里我们将沿着事物的历史发展过程来叙述这一历史的重要意义.M.克莱茵(M.Klein)在评价这一段历史的时候说:“非欧几何的历史以惊人的形式说明数学家受其时代精神影响的程度是那么厉害.当时萨凯里曾拒绝过欧氏几何的奇异定理,并且断定欧氏几何是唯一正确的.但在一百年后,高斯、罗巴切夫斯基和波约满怀信心地接受了新几何”.
2.1对数学学科本身
2.1.1数学发展的相对独立性
通过逻辑演绎法建立的非欧几何体系为数学的发展提供了一种模式,使人们清楚地看到数学可以有自己的逻辑体系存在,从而独立发展.数学发展的相对独立性突出表现为:数学理论的发展往往具有超前性,它可以独立于物理世界而进行,可以超前于社会实践,并反作用于社会实践,推动数学乃至于整个科学向前发展.19世纪前,数学始终与应用数学紧密结合在一起,即数学不能离开实用学科而独立发展,研究数学的最终目的是为了解决实际问题,但是非欧几何第一次使数学的发展领先于实用科学,超越人们的经验,非欧几何为数学创造了一个全新的世界:人类可以利用自己的思维,按照数学的逻辑要求自由自在的进行思考.于是数学被认为应当是那些并不是直接地或间接地由于研究自然界的需要而产生出来的任意结构.这种观点逐渐被人们了解,于是造成了今天的纯粹数学与应用数学的分裂LlJ.
2.1.2数学的本质在于它的充分自由
非欧几何的创立,使一直为人们意识到但未曾清楚地认识的区别呈现出来了即数学空间与物理空间的不同.数学家创造m几何理论,然后由此决定他们的空间观,这种建立在数学理论基础上的空间观、自然观,一般并不能否定客观世界的存在等内容,它仅仅强调这样一些事实:人们关于空间的判断所获得的一系列结论纯粹是自己的创造.物质世界现实与这种现实的理论,永远是两回事.正因为如此,人类探索知识、建立理论的认识活动才永远没有尽头.非欧几何的创立使人们认识到数学是人的精神的创造物,而不是对客观现实的直接临摹,这样就使数学获得了极大的白南,同时也使数学丧失了对现实的确定性.数学从自然界和科学中解脱出来,继续着它自己的行程.对此,M.克莱茵说:“数学史的这一阶段,使数学摆脱了与现实的紧密联系,并使数学本身从科学中分离出来了,就如同科学从哲学中分离出来,哲学从宗教中分离出来,宗教从万物有灵论和迷信中分离出来一样.现在可以利用乔治.康托的话了:‘数学的本质在于它的充分自由”’.
2.1.3几何观念的更新
非欧几何的出现打破了欧氏几何一统天下的局面,使几何学的观念得到更新.传统欧氏几何认为空间是唯一的,而非欧几何的出现打破了这种观念,促使人们对欧氏几何乃至整个几何学的基础问题作深人探讨.
2.2文化教育方面
2.2.1非欧几何是敢于向传统挑战、勇于为科学献身的人类精神的产物高斯、波约、罗巴切夫斯基几乎同时发现了非欧几何,但3人对待新几何的态度是不同的.高斯很早就意识到了新几何的存在,但他没有向世人公布他的新思想,他受康特(Kant)唯心思想的影响,不敢向传统几何学界达2000a之久的欧氏几何挑战,以致推迟了非欧几何的诞生.波约致力于平行公设的研究,终于发现了新几何.这其中还有一个故事,当高斯决定将自己的发现秘而不宣时,波约却急切的想通过高斯的评价将自己的研究公诸于世,然而高斯回信给他的父亲F波约中说:“夸奖他就等于称赞我自己.整篇文章的内容,你儿子采取的思路和获得的结果,与我在30至35年前的思考不谋而合”],波约对高斯的回答深感失望。认为高斯想剽窃自己的成果,特别是在罗巴切夫斯基关于非欧几何的著作出版后,他更决定从此不再发表论文.
罗巴切夫斯基在1826年公开新几何思想后,并没有得到同代人的理解与赞扬,反而遭到讽刺和攻击,“可是没有任何力量可以动摇罗巴切夫斯基的信心,他像屹立在大海中的灯塔,惊涛骇浪的冲击,十足显出他刚毅的意志,他一生始终为新思想而斗争f4Jj’,在他双目失明时,还口授完成了《泛几何学》.
3人发现新几何的过程启示我们:只有突破了对传统、对权威的迷信,才能充分发挥科学的创造性;只有不畏艰难困苦,勇于为科学献身,才能追求、捍卫超越时代的真理.一般认为高斯、波约、罗巴切夫斯基3人同时发现了新几何,这是人们对历史的公正,但人们更喜欢称新几何为罗氏几何,这正是人们对罗巴切夫斯基为科学献身
精神的高度赞扬.
2,2,2非欧几何精神促使人们树立宽容、包容一切的产物
非欧几何的创立,解放了人类思想,新见解、新观点不断涌现,“数学显现为人类思想的自由创造物”5].数学的发展使康托由衷的说道:“数学的本质在于其自由”.这种思想活跃而且民主的艺术气氛,使数学以前所未有的速度向前发展.非欧几何曲折的创建历程及其所带来的数学的发展,使人们意识到自由创造、百家争鸣对科学发展的重要性,促使人们树立宽容、包容一切的精神与美德[6.
2.3哲学思想方面
2.3.1认识论的变革
法国哲学家、数学家彭加莱(HenriPoincare)说过7:非欧几何的发现,是认识论一次革命的根源.简单讲,人们可以说,这一发现已经胜利的打破了那个为传统逻辑所要求的,束缚住任何理论的两难论题:即科学的原理要么是必然真理(先验综合的逻辑结论);要么是断言的真理(感官观察的事实).他指出:原理可能是简单的任意约定,但是这些约定决不是同我们的心灵和自然界无关的,它们只能靠着一切人的默契才能存在,它们并且紧密地依赖着我们所生活的环境中的实际外界条件.事实上正是由于这一点,对于探索未知或目前无法感知的事物,我们可以在哲学的领域里依靠我们对自然界的认识作某种“默契约定”,这是认识一切事物的开始和基础.另外,我们在理论评判中,放弃非彼即此的评判,爱因斯坦就说过8]:这种非彼即此的评判是不正确的.这些评判家、数学家的评判无疑是非欧几何创立后,其对思想、理论建立,特别是对认识论有最为直接的影响;更进一步的近代的理论和技术的进步均离不开它的内在影响,像“相对论”的产生、特别是对时空的进一步认识,集合论、现代分析基础、数理逻辑、量子力学等学科建立与发展均可以看成是非欧几何的直接结果.非欧几何的创立所产生的震荡至今余波未消.
2.3.2打破人类的传统思维方式
分析和评价一种理论的首要依据应该是看其是否有“相容性”,即它是否有或会得出自相矛盾的结论,如果一个理论尚不能“自圆其说”。说明这一理论要么还只是人类经验的一种简单表述和列举,还没有进化到“理论”的高度;要么至少还需要进一步完善和改进.本来非欧几何与欧氏几何理论建立的前提是矛盾的,而欧氏几何已被普遍接受.是否接受非欧几何势必产生这样的问题,矛盾的前提是否一定能够导¨{矛盾的结果?传统的思维方式认为这是一定的,即矛盾的前提必然导致矛盾的结果.接受非欧几何就意味着要冲破这一传统思维方式的束缚.随着时间的推移,特别是非欧几何的成果的广泛应用,使人们认识到:我们在建立理论的过程中不能保证矛盾的前提一定能导矛盾的结果.因此,在理论的建立过程中,相容性是必须具备的…],特别是在导出某个结论的过程中,我们必须清醒的认识到建立的理论体系是否具有无矛盾性、是否具有排中性.
2-4对数学科研者
2.4.1勇敢面对在科学探索路途上的暴风雨
在科学探索的征途上,一个人经得住一时的挫折和打击并不难,难的是勇于长期甚至终生在逆境中奋斗.罗巴切夫斯基的新学说,违背了2000多a来的传统思想,动摇了欧氏几何“神圣不可侵犯”的权威基础,同时也违背了人们的“常识”.他的学说一发表,社会上的嘲弄、攻击,甚至侮辱、谩骂,暴雨般地袭来:科学院拒绝接受他的论文;大主教宣布他的学说是“邪说”;大多数的权威们称罗巴切夫斯基的学说是“伪科学”,是一场“笑话”;即使那些心肠比较好的人最多也只能抱着“对一个错误的怪人的宽容和惋惜态度”;连不少著名的文学家也起来反对这种新的几何,如德同诗人歌德,在他的名著(浮土德)中写下了这样的诗句:“有几何兮,名日:‘非欧’,自己嘲笑,莫名其妙”.面对种种攻击、嘲笑,罗巴切夫斯基毫不畏惧,寸步不让,他像屹立在大海中的灯塔,表现出一个科学家“追求科学需要的特殊勇敢”.罗巴切夫斯基坚信自己学说的正确性,为此奋斗一生.从l826年发表了非欧几何体系后,又陆续…版了《关于几何原本》等8本著作.在他逝世前la,他的眼睛差不多瞎了,还口述,用俄、法2种文字写成他的名著《泛几何学》.罗巴切夫斯基就是在逆境中奋斗终生的勇士.同样,一名数学工作者,特别是声望较高的学术专家,正确识别出那些已经成熟的或具有明显现实意义的科技成果并不难,难的是及时识别ff;那些尚未成熟或现实意义尚未露川来的科学成果.数学的发展决不是一帆风顺的,在更多的情况下是充满犹豫、徘徊,要经历艰难曲折甚至会面临更多危机的.我们每一位科学T作者,既应当作一名勇于在逆境中顽强点
头的科学探索者,义应当成为一个科学领域中新生事物的坚定支持者.
2_4_2正确对待数学领域里的成就
数学是一门历史性或者说积累性很强的学科.重大的数学理论总是在继承和发展原有理论的基础上建立起来的,它们不仅不会推翻原有的理论,而且总是包含原先的理论.如非欧几何可以看成是欧氏几何的拓广.因此,有的数学史家认为“在大多数的学科里,一代人的建筑为下一代人所拆毁,一个人的创造被下一个人所破坏.惟独数学,每一代人都在古老的大厦上添加一层楼”1].克莱茵在考察第五公设研究的历史特别是从18~19世纪非欧几何由“潜”到“显”转变的100多a的历史过程时指:“任何较大的数学分支或较大的特殊成果,都不会只是个人的工作,充其量,某些决定性步骤或证明可以归功于个人.这种数学积累特别适用于非欧几何”.事实上,自从《几何原本》以后到l9世纪,第五公设问题就像一块磁石一样广泛地吸引和激励着各个时代有才华的数学家为之奋斗.这就形成了一个在科学史上时间跨度最长、成员最多,并以传播和研究第五公设为范式的数学共同体.在这个共同体中,数学家相互交流思想,交换研究成果,对研究成果进行评议,形成不断竞争和激励的体制.罗巴切夫斯基也是从前人和自己的失败得到启迪,使他大胆思索问题的相反提法:可能根本就不存在第五公设的证明.于是,他便调转思路,着手寻求第五公设不可证的解答.罗巴切夫斯基正是沿着这个途径,在试证第五公设不可证的过程中发现一个新的几何世界的.也可以说,罗氏几何的m现应归功与萨凯里、兰伯特等对第五公设的研究.在今天分支越来越细的数学领域里,精通多个领域的知识的数学家也越来越少.对此,数学科研者应团结,相互进行交流;用平和的心态对待已取得的成绩,不骄不躁.
2.5对数学教师和数学学习者
2.5.1在质疑问难中培养创新思维
罗巴切夫斯基认为,作为一名优秀的数学教师,讲授数学必须叙述精确、严密,所有概念都应当完全清晰.因为在他看来,数学课程是以概念为基础的,几何学尤其如此.所以他在备课中,通过对欧氏几何的逻辑结构的全面思考,发现了其逻辑体系的缺陷,使他感到非常困惑.他决心在自己的教学实践中消除那些缺陷.后来他确实编写了一本几何教科书《几何学教程》(1883).他不仅在教材中形成并贯彻了他的非欧几何思想,而且他关于非欧几何
的研究,始终是和教学活动相结合的.他关于非欧几何的许多定理都是在授课过程中推导m来的,在学生中交流、修改和完善的.我们可以肯定的说,他创立非欧几何的伟大成果是从几何教育改革的角度切入的,是一个数学教育家取得伟大突破的成功范例.正如数学史家鲍尔加斯指出的“罗巴切夫斯基希望建立起在教学法意义上无可指责的几何学”,“这是促使他改革新几何的重要原因”.“他对教学法的探讨,获得了色的、开创几何学发展新阶段的、作为人类研究和征服周世界嗣新方法的科学结论”.所以作为一名2l世纪的数学教师,在平时的教学过程中要不断的学习这个时代的新的知识,要勇于质疑你已经掌握的知识;教学中引导学生广开思路,重视发散思维;教师要精选一些典型问题,鼓励学生标新立异、大胆猜想、探索,培养学生的创新意识.
2.5_2在教学中训练学生的创新思维
罗巴切夫斯基刚开始是循着前人的思路,试图给Ⅲ第五公设的证明.在仅存下来的他的学生听课笔记中,就记载着他在1816—1817学年度几何教学中给出的几个证明.但他很快就意识到证明是错误的.前人和自己的失败从反面启迪了他,使他大胆思索问题的相反提法:可能根本就不存在第五公设的证明.于是,他便调转思路,着手寻求第五公设不可证的解答.罗巴切夫斯基正是沿着这个途径,在试证第五公设不可证的过程中发现一个新的几何世界的.“学起于思,思源于疑”,我们在探索知识的思维过程总是从问题开始,又在解决问题中得到发展.教师不仅要善于设问,还要激发学生质疑问难.教学中,要鼓励学生在学习过程中碰到的问题提出来并和同学讨论,让学生存在一个充分表现的机会.先对不同问题提供同一思路来解决,之后提出个别条件的变化,要求用新的思路解决,以打破原来的思维定势,使思维灵活而富有创造性.
2.5.3非欧几何的历史对高校学生学习数学的意义
高校学生可通过对数学文化的学习,了解人类社会发展与数学发展的相互作用,认识数学发生、发展的必然规律;了解人类从数学的角度认识客观世界的过程;发展求知、求实、勇于探索的情感和态度;体会数学的系统性、严密性、应用的广泛性,了解数学真理的相对性;提高学习数学的兴趣.非欧几何的诞生和发展过程曲折而又艰辛,而数学家们也为之付出了巨大的努力.它于现今和以后的数学学习者有着深远而又积极的意义和影响.知识的学习
和研究永无止境,只有通过不断的创新和探索,才有新的知识的创造和新知识领域的发现.
“读史使人明智”,学习非欧几何学发展史对于揭示数学知识的现实来源和应用,对于引导学生体会真正的数学思维过程,创造一种探索与研究的数学学习气氛,对于
激发学生对数学的兴趣,培养探索精神,都有重要意义.
请参考文献
张卓飞,严秀昆
非欧几何的发展史及其启示 2007
穷通刍论的本书目录
维科的“论题法”是针对当时欧洲占主流地位的笛卡尔的“批判法”而言的。“批判法”是以欧几里得几何学为原型的分析方法。根据笛卡尔的理解,此方法的目标即追求确定无疑的第一真理,将复杂的事物解析为可靠的要素,通过已知的确切的要素推导出关于复杂事物的知识。此方法以确实性、分析性和演绎性为基本特征。
维科最初也学习风靡那波里的笛卡尔的自然学和哲学,接受了笛卡尔的逻辑主义和合理主义。在《论我们时代的方法》一文中,维科对这种新的方法给物理学、化学、医学、天文学、地理学、机械学乃至战争学等领域带来的惊人进步给予了充分的肯定。但维科作为大学的修辞学教授,一直关注历史、法律和政治等与人类经验密切相关的学科。他在思考这些学科的研究方法时,意识到笛卡尔方法的根本缺陷。首先,从必然性的真理出发做出的推论虽然是正确的,但因为作为出发点的前提只是对客观现实的某个特定侧面的描述,所以基于这种推论,我们不能对对象的整体有一个全面认识。其次,笛卡尔提出的真理标准即清晰、明白,虽然在数学和自然科学领域是可以达到的,但在人文历史等学科和领域则是不适用的。笛卡尔自己也承认,基于清楚明白的前提推导出必然性的结论的方法,不适用于历史和诸人文学科。只是笛卡尔认为只要某学科不适用于批判的方法,那该学科就不配“学问”之名,就是一种伪学问。
对此,维科提出,笛卡尔的真理观,也即普遍的、超越时空的真理观只是一种妄想。为了寻找学问的正当性的依据,我们必须探明其历史的由来。例如,基于演绎的数学方法确实是可靠的。但其中有一个隐含的前提,即我们能够对数学命题进行论证是因为它们是我们人类创造出来的东西。即我们能够正确把握的东西只是我们自己创造的东西。这就是维科的著名命题“真理即创造之物,创造之物即真理”(Verum et factum convertuntur)的由来。按照这一原理,数学因为完全是人构筑起来的知的体系,所以其真实可靠性最值得期待,而政治学(历史学)其次,自然学(物理学)因为具有最多的非人为的质料,所以其真理性最低。但是,正如数学只能描述蚂蚁的运动而不能明白蚂蚁作为生命的意义一样,我们通过数学方法对自然物的认识只是一种横截面的、静态的、抽象的认识,远远不能穷尽自然物的真实。维科基于对人类理性的界限的清醒认识,对科学独断论、理性万能论提出强烈质疑。
在维科看来,对于人的实践活动而言,只是“批判”是远远不够的。在人的语言活动和思维活动中,除了“批判”,还必须有作为“发现”技术的“论题法”。如果说“批判”代表的是科学理性、理论理性,那么“论题法”就代表生活的智慧、实践理性。如维科在《论我们时代的研究方法》中说:“批判方法可能是真实演说的艺术,而论题法则是雄辩演说的艺术”,“批判方法使我们占有真理,而论题法则使我们善于辞令”。
对“批判法”与“论题法”的区分并不是到维科才出现的,早在古代罗马的辩论术的传统中就有了类似的思想。按照亚里士多德的定义,“论题”决定着在进行议论之时,此议论与多少事情以及与何种类的事情发生关联,还包括话题将如何开始为宜等。按照他的说法,推论分为两种:论证式的推论与辩论术式的推论。前者从确定的真理出发,后者则以多数人相信的常识为基础。而“论题法”的对象显然是后者。具体的推论过程包括:发现、配列、设问。即“当一个人欲发问时,需要经过以下三个阶段:第一,发现论题所在,从而推导出辩证术的推论;第二,在心中将诸问一一配列;第三,最后将这些问题在许多人面前表达出来”。可见,在论题法中,“发现”处于非常重要的地位。西塞罗在《论题法》中说:“一切严肃的辩论法皆有两个部分,其一为发现的部分,其二为判断的部分”。而且,在西塞罗看来,从事物的本性来看,论点的发现应该先于对其真理性的判断,亦即“发现法”在自然的顺序上先于“判断法”。
可见“论题法”即对个别问题或题目进行具体的分析考察与陈述的方法。此“论题法”又被称为“场所论”。这是因为“论题法”的第一步就是发现论题之“所在”,也就是“场所”(topos,拉丁语locus)。当然这里的“场所”不是物理意义上的空间场所,而是指蓄积于记忆中的诸种论点、论据和常识等。将“论题法”与场所论明确地结合在一起的是西塞罗。“正如知道了隐藏的场所就容易知道隐藏的东西一样,如果我们要进行充分的议论,就必须知道关于这一问题的论题之所在”。场所论所蕴含的哲学内涵在现代哲学中被人们所重视,也是日本当代的“场所哲学”的理论源头。
修辞学之祖苏格拉底曾将高超的论辩的智慧称为“哲学”,可见哲学原本是与修辞学、论辩术密不可分的。在所谓近代意义上的客观的、科学的“知”之外,还有着古老的论辩的、实践的“知”的传统。这一传统直到近代也不绝于耳。如培根作为科学之“知”的倡导者与归纳法的发现者而为人所知。但同时他也是传统的“论题法”的继承者与革新者。在《学问的发达》一书中,培根对古典修辞学的“五段论法”中的“发现”做了新的阐述,将“发现”划分为“技术与诸科学的发现”与“论题、论点的发现”。虽然培根注重第一类的、对未知进行探究的“发现”的意义,但他仍然承认第二类的探究的价值。在培根看来,其价值就在于在对具体问题进行考察和表述过程中,能够从我们的知识库中迅速地找到需要的知识。而且,因为第二类的发现与特殊领域的素材有着密不可分的关系,所以它也可以成为自然研究方法的一部分。
培根虽然在“批判法”之外,给了“论题法”一定位置,但此“论题法”毕竟是附属性质的,也就是说,只有在它服务于对自然的研究时它才是有意义的。说到底,培根与笛卡尔一样推崇自然之“知”而轻视人文之“知”,推崇理论真理而贬斥实践真理。
维科的思想并不是从外部,即人文主义的立场对17世纪的“科学革命”做出反驳,而是在充分认识到“科学革命”的成就和意义基础上,对其局限性做出的敏锐洞察和分析。具体而言,维科担忧的是将几何学的方法和规则简单地导入自然学领域,以及由此导致的将数学的世界与自然的世界相混同的危险。几何学的方法是数学家建立起来的,只能适合于数学的世界,而自然学领域则必须有自然学独自的方法。如果无视这一点,将几何学的方法机械地运用于自然领域,就会把两者视为同质的存在。
几何学的方法只是将已经能够发现的东西进行正确的排序,而发现则必须依赖创意的能力。维科本身并没有要建立一套哲学体系的企图。包括其为抗衡笛卡尔的“批判的方法”而提出的“论题法”,也只是作为一种辩论术或修辞学的概念而展开论述的。即使他强调“论题法”的在先性,也是在人们学习或掌握各种学问的次序等意义上来立论的。但如果我们考虑到维科对古老的“论题法”的哲学内涵做了深化,考虑到其对现代哲学的诸多启示,我们也可以称其哲学为“论题哲学”。
维科的“论题法”首先强调知识与实践智慧的区分。自然研究中近代的数学方法、试验方法是有效的,运用这种方法,我们确实可以得到对事物某些本性的确定认知。但在社会或历史领域,这种方法就显出局限性。因为人文学科或实践学科处理人与人之间的关系,而人却有着自由意志,有各种情感欲望的存在。如果我们将人视为单纯的理性的存在,按照某种理念去解释社会或历史,就会误入歧途。这不仅因为社会或历史现象具有无穷变量,我们在研究过程中不可能像处理几何学问题那样穷尽这些变量,更因为知识要求用一个原因演绎式地解释许多自然现象,而实践的智慧则要求用众多的原因说明一个社会历史现象。与此相关,维科对最高真理与最低真理进行了区分。基于演绎而得的所谓理论真理因为排除了常识和意见的纠缠,所以看起来是纯粹的、必然性的最高真理,而实践的智慧不仅得到的是或然性的真理,而且需要照顾人们对真理的看法和感受(即常识)。
从思维方式上看,“批判法”追求事物表象之后、之外的逻辑必然性,所以是对事物的抽象的、一般的特征进行分析概括;而“论题法”则是对事物本身进行多方面的、多层次的、立体的把握,是对事物的具体的、特殊的性质的认识。正如维科在对古代罗马的医学与近代机械论医学的比较中所指出的,“批判法”体现的是分析思维、主客分离思维、清晰思维;而“论题法”体现的是一种系统思维、整体思维、模糊思维。“论题法”所体现的这些哲学内涵都与后现代哲学的某些观念有相近之处,所以维科受到现代西方哲学界的推崇不是偶然的。
序(1)……………………………..3
序(2)……………………………..5
一、沉思小语……………………….7
二、论“天文学”…………………...12
三、论“易经”……………………...22
四、论“堪与学”…………………...29
五、论“相理学”…………………...41
六、论“命理学”…………………...49
七、论“择日学”…………………...57
八、论“天命观”…………………...63
九、论“宗教”……………………...76
十、论“信仰”……………………...83
十一、论“死亡”…………………...88
十二、论“鬼神”…………………...94
十三、论“预感”…………………...101
十四、论“幸运与厄运”…………...105
十五、论“规律”…………………...107
十六、论“科学”…………………...114
十七、论“人性”…………………...120
十八、论“因果”…………………...124
十九、论“道义”…………………...133
二十、论“慈善”…………………...139
二十一、论“孝道”………………...142
二十二、论“官道”………………...149
二十三、论“交友”………………...157
二十四、论“诚信”………………...164
二十五、论“惜时”………………...171
二十六、论“谦逊”………………...177
二十七、论“低调”………………...182
二十八、论“慎独”………………...187
二十九、论“小节”………………...194
三十、论“忍耐”…………………...200
三十一、论“忧患”………………...206
三十二、论“难得糊涂”…………...214
三十三、论“浪费”………………...221
三十四、论“教育”………………...228
三十五、论“人才”………………...239
三十六、论“嫉妒”………………...247
三十七、论“忙碌”………………...252
三十八、论“心灯”………………...257
三十九、论“放下”………………...260
四十、论“从容”…………………...265
四十一、论“快乐”…………………268
四十二、论“人生价值”……………272
四十三、论“理想与梦想”…………276
四十四、论“时代精神”……………279
四十五、论“政治家与思想家”……283
四十六、论“攀比与对比”…………286
四十七、论“校庆”…………………288
四十八、论“自然环境”……………291
四十九、论“人生半百”……………299
五十、论“缺圆”……………………303
五十一、彻悟“昙”…………………306
跋……………………………………308
后记…………………………………310
关于“如何看待一个科学理论“战胜”另一个科学理论”这个话题的介绍,今天小编就给大家分享完了,如果对你有所帮助请保持对本站的关注!