网上有关“初一数学知识点总结有哪些”话题很是火热,小编也是针对初一数学知识点总结有哪些寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。
学习初一数学是一分耕耘一分收获,想学好数学只有勇敢的付出行动。下面是由我为大家整理的“初一数学知识点总结有哪些”,仅供参考,欢迎大家阅读。
初一数学知识点总结1.单项式:在代数式中,若只含有乘法(包括乘方)运算。或虽含有除法运算,但除式中不含字母的一类代数式叫单项式;数字或字母的乘积叫单项式(单独的一个数字或字母也是单项式)。
2.系数:单项式中的数字因数叫做这个单项式的系数。所有字母的指数之和叫做这个单项式的次数。任何一个非零数的零次方等于1。
3.多项式:几个单项式的和叫多项式。
4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数。
5.常数项:不含字母的项叫做常数项。
6.多项式的排列
(1)把一个多项式按某一个字母的指数从大到小的`顺序排列起来,叫做把多项式按这个字母降幂排列。
(2)把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把多项式按这个字母升幂排列。
7.多项式的排列时注意
(1)由于单项式的项,包括它前面的性质符号,因此在排列时,仍需把每一项的性质符号看作是这一项的一部分,一起移动。
(2)有两个或两个以上字母的多项式,排列时,要注意:
a.先确认按照哪个字母的指数来排列。
b.确定按这个字母向里排列,还是向外排列。
(3)整式:
单项式和多项式统称为整式。
8.多项式的加法:
多项式的加法,是指多项式的同类项的系数相加(即合并同类项)。
9.同类项:所含字母相同,并且相同字母的次数也分别相同的项叫做同类项。
10.合并同类项:多项式中的同类项可以合并,叫做合并同类项,合并同类项的法则是:同类项的系数相加,所得的结果作为系数,字母与字母的指数不变。来源:https://www.faithandyoung.com/cshi/202412-12926.html">">
11.掌握同类项的概念时注意
(1)判断几个单项式或项,是否是同类项,就要掌握两个条件:
①所含字母相同。
②相同字母的次数也相同。
(2)同类项与系数无关,与字母排列的顺序也无关。
(3)所有常数项都是同类项。
拓展阅读:初一数学复习方法适当多做题,养成良好的解题习惯。
要想学好初一数学,做一定量的题目是必需的,刚开始要从基础题入手,以课本上的习题为准,反复练习打好基础,再找一些初一数学辅导书上的课外习题,以帮助开拓思路,提高自己的分析、解决能力,掌握一般的初一数学解题规律,熟悉掌握各种题型的解题思路。对于一些易错题,可备有错题集,写出自己错误的解题思路和正确的解题过程,两者一起比较找出自己的错误所在,以便及时更正。在平时要养成良好的解题习惯。让自己的精力高度集中,思维敏捷,能够进入最佳状态,在考试中能运用自如。实践证明:越到关键时候,你所表现的解题习惯与平时练习无异。如果平时解题时随便、粗心、大意等,往往在大考中会充分暴露,故在平时养成良好的解题习惯是非常重要的。
细心地挖掘概念和公式
很多初一同学对数学概念和公式不够重视,这类问题反映在三个方面:一是,对初一数学概念的理解只是停留在文字表面,对概念的特殊情况重视不够。二是,对初一数学概念和公式一味的死记硬背,缺乏与实际题目的联系。这样就不能很好的将学到的知识点与解题联系起来。三是,一部分同学不重视对数学公式的记忆。记忆是理解的基础。
总结相似的类型题目
当你会总结题目,对所做的题目会分类,知道自己能够解决哪些题型,掌握了哪些常见的解题方法,还有哪些类型题不会做时,你才真正的掌握了数学这门学科的窍门,才能真正的做到“任它千变万化,我自岿然不动”。这个问题如果解决不好,在进入初二、初三以后,同学们会发现,有一部分同学天天做题,可成绩不升反降。其原因就是,他们天天都在做重复的工作,很多相似的题目反复做,需要解决的问题却不能专心攻克。久而久之,不会的题目还是不会,会做的题目也因为缺乏对数学的整体把握,弄的一团糟。
收集自己的典型错误和不会的题目
同学们最难面对的,就是自己的错误和困难。但这恰恰又是最需要解决的问题。同学们做题目,有两个重要的目的:一是,将所学的知识点和技巧,在实际的题目中演练。另外一个就是,找出自己的不足,然后弥补它。这个不足,也包括两个方面,容易犯的错误和完全不会的内容。但现实情况是,同学们只追求做题的数量,草草的应付作业了事,而不追求解决出现的问题,更谈不上收集错误。
初一数学基础知识点
初中马上要升入高中,数学是考试拉分科目之一,那么初中数学必考知识点有哪些呢。以下是由我为大家整理的“初中数学必考知识点总结”,仅供参考,欢迎大家阅读。
初中数学必考知识点总结一元二次方程
学生已经掌握了用一元一次方程解决实际问题的方法。在解决某些实际问题时还会遇到一种新方程 —— 一元二次方程。“一元二次方程”一章就来认识这种方程,讨论这种方程的解法,并运用这种方程解决一些实际问题。
本章首先通过雕像设计、制作方盒、排球比赛等问题引出一元二次方程的概念,给出一元二次方程的一般形式。然后让学生通过数值代入的方法找出某些简单的一元二次方程的解,对一元二次方程的解加以体会,并给出一元二次方程的根的概念,
“降次——解一元二次方程”一节介绍配方法、公式法、因式分解法三种解一元二次方程的方法。下面分别加以说明来源:https://www.faithandyoung.com/cshi/202412-954.html">">。
(1)在介绍配方法时,首先通过实际问题引出形如 的方程。这样的方程可以化为更为简单的形如 的方程,由平方根的概念,可以得到这个方程的解。进而举例说明如何解形如 的方程。然后举例说明一元二次方程可以化为形如 的方程,引出配方法。最后安排运用配方法解一元二次方程的例题。在例题中,涉及二次项系数不是1的一元二次方程,也涉及没有实数根的一元二次方程。对于没有实数根的一元二次方程,学了“公式法”以后,学生对这个内容会有进一步的理解。
(2)在介绍公式法时,首先借助配方法讨论方程 的解法,得到一元二次方程的求根公式。然后安排运用公式法解一元二次方程的例题。在例题中,涉及有两个相等实数根的一元二次方程,也涉及没有实数根的一元二次方程。由此引出一元二次方程的解的三种情况。
(3)在介绍因式分解法时,首先通过实际问题引出易于用因式分解法的一元二次方程,引出因式分解法。然后安排运用因式分解法解一元二次方程的例题。最后对配方法、公式法、因式分解法三种解一元二次方程的方法进行小结。
“实际问题与一元二次方程”一节安排了四个探究栏目,分别探究传播、成本下降率、面积、匀变速运动等问题,使学生进一步体会方程是刻画现实世界的一个有效的数学模型。
旋转
学生已经认识了平移、轴对称,探索了它们的性质,并运用它们进行图案设计。本书中图形变换又增添了一名新成员――旋转。“旋转”一章就来认识这种变换,探索它的性质。在此基础上,认识中心对称和中心对称图形。
“旋转”一节首先通过实例介绍旋转的概念。然后让学生探究旋转的性质。在此基础上,通过例题说明作一个图形旋转后的图形的方法。最后举例说明用旋转可以进行图案设计。
“中心对称”一节首先通过实例介绍中心对称的概念。然后让学生探究中心对称的性质。在此基础上,通过例题说明作与一个图形成中心对称的图形的方法。这些内容之后,通过线段、平行四边形引出中心对称图形的概念。最后介绍关于原点对称的点的坐标的关系,以及利用这一关系作与一个图形成中心对称的图形的方法。
拓展阅读:提升数学成绩的方法该记的记,该背的背,不要以为理解了就行
因此,数学的定义、法则、公式、定理等一定要记熟,有些最好能背诵,朗朗上口。比如大家熟悉的“整式乘法三个公式”,如果背不出这三个公式,将会对今后的学习造成很大的麻烦,因为今后的学习将会大量地用到这三个公式,特别是初二即将学的因式分解,其中相当重要的三个因式分解公式就是由这三个乘法公式推出来的,二者是相反方向的变形。
对数学的定义、法则、公式、定理等,理解了的要记住,暂时不理解的也要记住,在记忆的基础上、在应用它们解决问题时再加深理解。记不住数学的定义、法则、公式、定理就很难解数学题。而记住了这些再配以一定的方法、技巧和敏捷的思维,就能在解数学题,甚至是解数学难题中得心应手。
学能力的培养是深化学习的必由之路
在学习新概念、新运算时,老师们总是通过已有知识自然而然过渡到新知识,水到渠成,亦即所谓“温故而知新”。因此说,数学是一门能自学的学科,自学成才最典型的例子就是数学家华罗庚。
我们在课堂上听老师讲解,不光是学习新知识,更重要的是潜移默化老师的那种数学思维习惯,逐渐地培养起自己对数学的一种悟性。
自学能力越强,悟性就越高。随着年龄的增长,同学们的依赖性应不断减弱,而自学能力则应不断增强。因此,要养成预习的习惯。
因此,以前的数学学得扎实,就为以后的进取奠定了基础,就不难自学新课。同时,在预习新课时,碰到什么自己解决不了的问题,带着问题去听老师讲解新课,收获之大是不言而喻的。
自信才能自强
在考试中,总是看见有些同学的试卷出现许多空白,即有好几题根本没有动手去做。当然,俗话说,艺高胆大,艺不高就胆不大。但是,做不出是一回事,没有去做则是另一回事。稍微难一点的数学题都不是一眼就能看出它的解法和结果的。要去分析、探索、比比画画、写写算算,经过迂回曲折的推理或演算,才显露出条件和结论之间的某种联系,整个思路才会明朗清晰起来。
学习这件事不在乎有没有人教你,最重要的是在于你自己有没有觉悟和恒心。任何科目 学习 方法 其实都是一样的,不断的记忆与练习,使知识刻在脑海里。下面是我给大家整理的一些初一数学的知识点,希望对大家有所帮助。来源:https://www.faithandyoung.com/zhishi/202412-39.html">">
七年级数学 知识点
生活中的轴对称
1、轴对称图形:如果一个图形沿一条直线折叠后,直线两旁的部分能够完全重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。
2、轴对称:对于两个图形,如果沿一条直线对折后,它们能互相重合,那么称这两个图形成轴对称,这条直线就是对称轴。可以说成:这两个图形关于某条直线对称。
3、轴对称图形与轴对称的区别:轴对称图形是一个图形,轴对称是两个图形的关系。
联系:它们都是图形沿某直线折叠可以相互重合。
2、成轴对称的两个图形一定全等。
3、全等的两个图形不一定成轴对称。
4、对称轴是直线。
5、角平分线的性质
1、角平分线所在的直线是该角的对称轴。
2、性质:角平分线上的点到这个角的两边的距离相等。
6、线段的垂直平分线
1、垂直于一条线段并且平分这条线段的直线叫做这条线段的垂直平分线,又叫线段的中垂线。
2、性质:线段垂直平分线上的点到这条线段两端点的距离相等。
7、轴对称图形有:
等腰三角形(1条或3条)、等腰梯形(1条)、长方形(2条)、菱形(2条)、正方形(4条)、圆(无数条)、线段(1条)、角(1条)、正五角星。
8、等腰三角形性质:
①两个底角相等。②两个条边相等。③“三线合一”。④底边上的高、中线、顶角的平分线所在直线是它的对称轴。
9、①“等角对等边”∵∠B=∠C∴AB=AC
②“等边对等角”∵AB=AC∴∠B=∠C
10、角平分线性质:
角平分线上的点到角两边的距离相等。
∵OA平分∠CADOE⊥AC,OF⊥AD∴OE=OF
11、垂直平分线性质:垂直平分线上的点到线段两端点的距离相等。
∵OC垂直平分AB∴AC=BC
12、轴对称的性质
1、两个图形沿一条直线对折后,能够重合的点称为对应点(对称点),能够重合的线段称为对应线段,能够重合的角称为对应角。2、关于某条直线对称的两个图形是全等图形。
2、如果两个图形关于某条直线对称,那么对应点所连的线段被对称轴垂直平分。
3、如果两个图形关于某条直线对称,那么对应线段、对应角都相等。
13、镜面对称
1.当物体正对镜面摆放时,镜面会改变它的左右方向;
2.当垂直于镜面摆放时,镜面会改变它的上下方向;
3.如果是轴对称图形,当对称轴与镜面平行时,其镜子中影像与原图一样;
学生通过讨论,可能会找出以下解决物体与像之间相互转化问题的办法:来源:https://www.faithandyoung.com/bkjj/202412-140.html">">
(1)利用镜子照(注意镜子的位置摆放);(2)利用轴对称性质;
(3)可以把数字左右颠倒,或做简单的轴对称图形;
(4)可以看像的背面;(5)根据前面的结论在头脑中想象。
初一下册数学《三角形》知识点
一、目标与要求
1.认识三角形,了解三角形的意义,认识三角形的边、内角、顶点,能用符号语言表示三角形。来源:https://www.faithandyoung.com/cshi/202412-351.html">">
2.经历度量三角形边长的实践活动中,理解三角形三边不等的关系。
3.懂得判断三条线段可否构成一个三角形的方法,并能运用它解决有关的问题。
4.三角形的内角和定理,能用平行线的性质推出这一定理。
5.能应用三角形内角和定理解决一些简单的实际问题。
二、重点
三角形内角和定理;
对三角形有关概念的了解,能用符号语言表示三条形。
三、难点
三角形内角和定理的推理的过程;
在具体的图形中不重复,且不遗漏地识别所有三角形;
用三角形三边不等关系判定三条线段可否组成三角形。
四、知识框架
五、知识点、概念 总结
1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
2.三角形的分类
3.三角形的三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。
4.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。
5.中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。
6.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。
7.高线、中线、角平分线的意义和做法来源:https://www.faithandyoung.com/cshi/202501-3997.html">">
8.三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。
9.三角形内角和定理:三角形三个内角的和等于180°
推论1直角三角形的两个锐角互余;
推论2三角形的一个外角等于和它不相邻的两个内角和;
推论3三角形的一个外角大于任何一个和它不相邻的内角;
三角形的内角和是外角和的一半。来源:https://www.faithandyoung.com/cshi/202412-890.html">">
10.三角形的外角:三角形的一条边与另一条边延长线的夹角,叫做三角形的外角。
11.三角形外角的性质
(1)顶点是三角形的一个顶点,一边是三角形的一边,另一边是三角形的一边的延长线;
(2)三角形的一个外角等于与它不相邻的两个内角和;
(3)三角形的一个外角大于与它不相邻的任一内角;
(4)三角形的外角和是360°。
12.多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。来源:https://www.faithandyoung.com/xwzx/202412-12205.html">">
13.多边形的内角:多边形相邻两边组成的角叫做它的内角。
14.多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。来源:https://www.faithandyoung.com/zhishi/202412-89.html">">
15.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。
16.多边形的分类:分为凸多边形及凹多边形,凸多边形又可称为平面多边形,凹多边形又称空间多边形。多边形还可以分为正多边形和非正多边形。正多边形各边相等且各内角相等。
17.正多边形:在平面内,各个角都相等,各条边都相等的多边形叫做正多边形来源:https://www.faithandyoung.com/cshi/202412-533.html">">。
18.平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面。
初一 数学学习方法
一预习
对于理科学习,预习是必不可少的。我们在预习中,应该把书上的内容看一遍,尽力去理解,对解决不了的问题适当作出标记,请教老师或课上听讲解决,并试着做一做书后的习题检验预习效果。
二听讲
这一环节最为重要,因为老师把知识的精华都浓缩在课堂上,听数学课时应做到抓住老师讲题的思路,方法。有问题记下来,课下整理,解决,数学课上一定要积极思考,跟着老师的思路走。
三复习
体会老师课上的例题,整理思维,想想自己是怎么想的,与老师的思路有何异同,想想每一道题的考点,并试着一题多解,做到举一反三。
四作业
认真完成老师留的习题,适当挑选一些课外习题作为练习,但切忌一味追求偏题,怪题,更不要打“题海战术”。
五总结
这一步是为了更好的掌握所学知识。在学完一段知识或做了一道典型题后可总结:总结专题的数学知识;总结自己卡壳的地方;总结自己是怎么错的,错在哪里,总结题目的“陷阱”设在哪里及总结自己或他人的想法来源:https://www.faithandyoung.com/xwzx/202412-12199.html">">。
如何挑选及处理习题
一市面上的习题集数不胜数,大多数的习题集互相抄袭,漏洞百出,使同学在练习的过程中费时费力。我认为历的考试真题是的习题,它紧扣考试大纲,难度适中,不会出现偏题怪题的现象。同时也使同学们紧紧的把握考试的方向,少走弯路。
二有的同学喜欢“题海战术”拿题就做,从不总结,感觉作的越多,成绩越高。这是学习数学的弊端之一。
要记住:题不在于多而在于精。作题是必不可少的,但作完每一道题都要认真的 反思 ,这道题的考点是什么,这道题的解题方法有多少种,哪种方法最简便,对于作错的习题要反复的思考,找出错误的原因,确保该知识点的熟练掌握。来源:https://www.faithandyoung.com/xwzx/202412-16014.html">">
三很多同学喜欢作偏题,难题。但却疏忽了对书本中的定义,概念及公式的理解。从而导致了在考试中经常出现“基本题”失误的现象。
因此,在平时的数学练习中,要对书中的每一个知识点都要深刻的理解,找出可能出现的考点,陷阱。在考试中则要做到“基本题全作对,稳作中档题一分不浪费,尽力冲击高档题,即使错了不后悔。”
初一数学基础知识点相关 文章 :
★ 初中数学基础知识整理归纳
★ 初一数学基础知识有哪些?
★ 初一数学上册知识点 来源:https://www.faithandyoung.com/bkjj/202412-82.html">">
★ 人教版初一数学知识点整理
★ 初中数学基础知识点归纳总结
★ 初一数学上册知识点归纳
★ 初中数学基础知识点总结
★ 初一数学课本知识点总结
★ 初一数学知识点整理
★ 初一数学知识点归纳与学习方法
关于“初一数学知识点总结有哪些”这个话题的介绍,今天小编就给大家分享完了,如果对你有所帮助请保持对本站的关注!