网上有关“分布式存储是什么?”话题很是火热,小编也是针对分布式存储是什么?寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。
什么是分布式存储系统?
就是将数据分散存储在多 *** 立的设备上
分布式存储是什么?选择什么样的分布式存储更好?
分布式存储系统,是将数据分散存储在多 *** 立的设备上。传统的网络存储系统采用集中的存储服务器存放所有数据,存储服务器成为系统性能的瓶颈,也是可靠性和安全性的焦点,不能满足大规模存储应用的需要。分布式网络存储系统采用可扩展的系统结构,利用多台存储服务器分担存储负荷,利用位置服务器定位存储信息,它不但提高了系统的可靠性、可用性和存取效率,还易于扩展。
联想超融合ThinkCloud AIO超融合云一体机是联想针对企业级用户推出的核心产品。ThinkCloud AIO超融合云一体机实现了对云管理平台、计算、网络和存储系统的无缝集成,构建了云计算基础设施即服务的一站式解决方案,为用户提供了一个高度简化的一站式基础设施云平台。这不仅使得业务部署上线从周缩短到天,而且与企业应用软件、中间件及数据库软件完全解耦,能够有效提升企业IT基础设施运维管理的效率和关键应用的性能
什么是分布式数据存储
定义:
分布式数据库是指利用高速计算机网络将物理上分散的多个数据存储单元连接起来组成一个逻辑上统一的数据库。分布式数据库的基本思想是将原来集中式数据库中的数据分散存储到多个通过网络连接的数据存储节点上,以获取更大的存储容量和更高的并发访问量。近年来,随着数据量的高速增长,分布式数据库技术也得到了快速的发展,传统的关系型数据库开始从集中式模型向分布式架构发展,基于关系型的分布式数据库在保留了传统数据库的数据模型和基本特征下,从集中式存储走向分布式存储,从集中式计算走向分布式计算。
特点:
1.高可扩展性:分布式数据库必须具有高可扩展性,能够动态地增添存储节点以实现存储容量的线性扩展。
2 高并发性:分布式数据库必须及时响应大规模用户的读/写请求,能对海量数据进行随机读/写。
3. 高可用性:分布式数据库必须提供容错机制,能够实现对数据的冗余备份,保证数据和服务的高度可靠性。
分布式块存储和 分布式文件存储有是什么区别
分布式文件系统(dfs)和分布式数据库都支持存入,取出和删除。但是分布式文件系统比较暴力,可以当做key/value的存取。分布式数据库涉及精炼的数据,传统的分布式关系型数据库会定义数据元组的schema,存入取出删除的粒度较小。
分布式文件系统现在比较出名的有GFS(未开源),HDFS(Hadoop distributed file system)。分布式数据库现在出名的有Hbase,oceanbase。其中Hbase是基于HDFS,而oceanbase是自己内部实现的分布式文件系统,在此也可以说分布式数据库以分布式文件系统做基础存储。
统一存储和融合存储以及分布式存储的区别
统一存储具体概念:
统一存储,实质上是一个可以支持基于文件的网络附加存储(NAS)以及基于数据块的SAN的网络化的存储架构。由于其支持不同的存储协议为主机系统提供数据存储,因此也被称为多协议存储。
基本简介:
统一存储(有时也称网络统一存储或者NUS)是一个能在单一设备上运行和管理文件和应用程序的存储系统。为此,统一存储系统在一个单一存储平台上整合基于文件和基于块的访问,支持基于光纤通道的SAN、基于IP的SAN(iSCSI)和NAS(网络附加存储)。
工作方式:
既然是一个集中化的磁盘阵列,那么就支持主机系统通过IP网络进行文件级别的数据访问,或通过光纤协议在SAN网络进行块级别的数据访问。同样,iSCSI亦是一种非常通用的IP协议,只是其提供块级别的数据访问。这种磁盘阵列配置多端口的存储控制器和一个管理接口,允许存储管理员按需创建存储池或空间,并将其提供给不同访问类型的主机系统。最通常的协议一般都包括了NAS和FC,或iSCSI和FC。当然,也可以同时支持上述三种协议的,不过一般的存储管理员都会选FC或iSCSI中的一种,它们都提供块级别的访问方式,和文件级别的访问方式(NAS方式)组成统一存储。
分布式存储支持多节点,节点是什么,一个磁盘还是一个主控?
一个节点是存储节点的简称,存储节点一般是一个存储服务器(必然带控制器),服务器之间通过高速网络互连。
现在越来越多的存储服务器使用arm CPU+磁盘阵列节省能耗,提高“容量能耗比”。
分布式文件系统有哪些主要的类别?
分布式存储在大数据、云计算、虚拟化场景都有勇武之地,在大部分场景还至关重要。munity.emc/message/655951 下面简要介绍*nix平台下分布式文件系统的发展历史:
1、单机文件系统
用于操作系统和应用程序的本地存储。
2、网络文件系统(简称:NAS)
基于现有以太网架构,实现不同服务器之间传统文件系统数据共享。
3、集群文件系统
在共享存储基础上,通过集群锁,实现不同服务器能够共用一个传统文件系统。
4、分布式文件系统
在传统文件系统上,通过额外模块实现数据跨服务器分布,并且自身集成raid保护功能,可以保证多台服务器同时访问、修改同一个文件系统。性能优越,扩展性很好,成本低廉。
分布式存储都有哪些,并阐述其基本实现原理
神州云科 DCN NCS DFS2000(简称DFS2000)系列是面向大数据的存储系统,采用分布式架构,真正的分布式、全对称群集体系结构,将模块化存储节点与数据和存储管理软件相结合,跨节点的客户端连接负载均衡,自动平衡容量和性能,优化集群资源,3-144节点无缝扩展,容量、性能岁节点增加而线性增长,在 60 秒钟内添加一个节点以扩展性能和容量。
什么是Hadoop分布式文件系统 10分
分布式文件系统(Distributed File System)是指文件系统管理的物理存储资源不一定直接连接在本地节点上,而是通浮计算机网络与节点相连。
Hadoop是Apache软件基金会所研发的开放源码并行运算编程工具和分散式档案系统,与MapReduce和Google档案系统的概念类似。
HDFS(Hadoop 分布式文件系统)是其中的一部分。
分布式文件存储系统采用什么方式
一。分布式Session的几种实现方式1.基于数据库的Session共享2.基于NFS共享文件系统3.基于memcached 的session,如何保证 memcached 本身的高可用性?4. 基于resin/tomcat web容器本身的session复制机制5. 基于TT/Redis 或 jbosscache 进行 session 共享。6. 基于cookie 进行session共享或者是:一、Session Replication 方式管理 (即session复制) 简介:将一台机器上的Session数据广播复制到集群中其余机器上 使用场景:机器较少,网络流量较小 优点:实现简单、配置较少、当网络中有机器Down掉时不影响用户访问 缺点:广播式复制到其余机器有一定廷时,带来一定网络开销二、Session Sticky 方式管理 简介:即粘性Session、当用户访问集群中某台机器后,强制指定后续所有请求均落到此机器上 使用场景:机器数适中、对稳定性要求不是非常苛刻 优点:实现简单、配置方便、没有额外网络开销 缺点:网络中有机器Down掉时、用户Session会丢失、容易造成单点故障三、缓存集中式管理 简介:将Session存入分布式缓存集群中的某台机器上,当用户访问不同节点时先从缓存中拿Session信息 使用场景:集群中机器数多、网络环境复杂优点:可靠性好 缺点:实现复杂、稳定性依赖于缓存的稳定性、Session信息放入缓存时要有合理的策略写入二。Session和cookie的区别和联系以及Session的实现原理1、session保存在服务器,客户端不知道其中的信息;cookie保存在客户端,服务器能够知道其中的信息。 2、session中保存的是对象,cookie中保存的是字符串。 3、session不能区分路径,同一个用户在访问一个网站期间,所有的session在任何一个地方都可以访问到。而cookie中如果设置了路径参数,那么同一个网站中不同路径下的cookie互相是访问不到的。 4、session需要借助cookie才能正常 工作 。如果客户端完全禁止cookie,session将失效。是无状态的协议,客户每次读取web页面时,服务器都打开新的会话......
磁盘阵列的作用
你说的REID我实不知是什么.但是我想你应该是想了解什么是RAID吧!就是磁盘阵列!RAID(是Redundant Array of Independent Disk的缩写)
它是1988年由美国加州大学Berkeley分校的DavidPatterson教授等人提出来的磁盘冗余技术.从那时起,磁盘阵列技术发展得很快,并逐步走向成熟.现在已基本得到公认的有下面八种系列.
1.RAID0(0级盘阵列)
RAID0又称数据分块,即把数据分布在多个盘上,没有容错措施.其容量和数据传输率是单机容量的N倍,N为构成盘阵列的磁盘机的总数,I/O传输速率高,但平均无故障时间MTTF(MeanTimeToFailure)只有单台磁盘机的N分之一,因此零级盘阵列的可靠性最差.
2.RAID1(1级盘阵列)
RAID1又称镜像(Mirror)盘,采用镜像容错来提高可靠性.即每一个工作盘都有一个镜像盘,每次写数据时必须同时写入镜像盘,读数据时只从工作盘读出.一旦工作盘发生故障立即转入镜像盘,从镜像盘中读出数据,然后由系统再恢复工作盘正确数据.因此这种方式数据可以重构,但工作盘和镜像盘必须保持一一对应关系.这种盘阵列可靠性很高,但其有效容量减小到总容量一半以下.因此RAID1常用于对出错率要求极严的应用场合,如财政、金融等领域.
3.RAID2(2级盘阵列)
RAID2又称位交叉,它采用汉明码作盘错检验,无需在每个扇区之后进行CRC(CyclicReDundancycheck)检验.汉明码是一种(n,k)线性分组码,n为码字的长度,k为数据的位数,r为用于检验的位数,故有:n=2r-1r=n-k
因此按位交叉存取最有利于作汉明码检验.这种盘适于大数据的读写.但冗余信息开销还是太大,阻止了这类盘的广泛应用.
4.RAID3(3级盘阵列)
RAID3为单盘容错并行传输阵列盘.它的特点是将检验盘减小为一个(RAID2校验盘为多个,DAID1检验盘为1比1),数据以位或字节的方式存于各盘(分散记录在组内相同扇区号的各个磁盘机上).它的优点是整个阵列的带宽可以充分利用,使批量数据传输时间减小;其缺点是每次读写要牵动整个组,每次只能完成一次I/O.
5.RAID4(4级盘阵列)
RAID4是一种可独立地对组内各盘进行读写的阵列.其校验盘也只有一个.
RAID4和RAID3的区别是:RAID3是按位或按字节交叉存取,而RAID4是按块(扇区)存取,可以单独地对某个盘进行操作,它无需象RAID3那样,那怕每一次小I/O操作也要涉及全组,只需涉及组中两台磁盘机(一台数据盘,一台检验盘)即可.从而提高了小量数据的I/O速率.
6.RAID5(5级盘阵列)
RAID5是一种旋转奇偶校验独立存取的阵列.它和RAID1、2、3、4各盘阵列的不同点,是它没有固定的校验盘,而是按某种规则把其冗余的奇偶校验信息均匀地分布在阵列所属的所有磁盘上.于是在同一台磁盘机上既有数据信息也有校验信息.这一改变解决了争用校验盘的问题,因此DAID5内允许在同一组内并发进行多个写操作.所以RAID5即适于大数据量的操作,也适于各种事务处理.它是一种快速,大容量和容错分布合理的磁盘阵列.
7.RAID6(6级盘阵列)
RAID6是一种双维奇偶校验独立存取的磁盘阵列.它的冗余的检、纠错信息均匀分布在所有磁盘上,而数据仍以大小可变的块以交叉方式存于各盘.这类盘阵列可容许双盘出错.
8.RAID7(7级盘阵列)
RAID7是在RAID6的基础上,采用了cache技术,它使得传输率和响应速度都有较大的提高.Cache是一种高速缓冲存储器,即数据在写入磁盘阵列以前,先写入cache中.一般采用cache分块大小和磁盘阵列中数据分块大小相同,即一块cache分块对应一块磁盘分块.在写入时将数据分别写入两个独立的cache,这样即使其中有一个cache出故障,数据也不会丢失.写操作将直接在cache级响应,然后再转到磁盘阵列.数据从cache写到磁盘阵列时,同一磁道的数据将在一次操作中完成,避免了不少块数据多次写的问题,提高了速度.在读出时,主机也是直接从cache中读出,而不是从阵列盘上读取,减少与磁盘读操作次数,这样比较充分地利用了磁盘带宽.
这样cache和磁盘阵列技术的结合,弥补了磁盘阵列的不足(如分块写请求响应差等缺陷),从而使整个系统以高效、快速、大容量、高可靠以及灵活、方便的存储系统提供给用户,从而满足了当前的技术发展的需要,尤其是多媒体系统的需要.
解析磁盘阵列的关键技术
存储技术在计算机技术中受到广泛关注,服务器存储技术更是业界关心的热点.一谈到服务器存储技术,人们几乎立刻与SCSI(Small Computer Systems Interface)技术联系在一起.尽管廉价的IDE硬盘在性能、容量等关键技术指标上已经大大地提高,可以满足甚至超过原有的服务器存储设备的需求.但由于Internet的普及与高速发展,网络服务器的规模也变得越来越大.同时,Internet不仅对网络服务器本身,也对服务器存储技术提出了苛刻要求.无止境的市场需求促使服务器存储技术飞速发展.而磁盘阵列是服务器存储技术中比较成熟的一种,也是在市场上比较多见的大容量外设之一.
在高端,传统的存储模式无论在规模上,还是安全上,或是性能上,都无法满足特殊应用日益膨胀的存储需求.诸如存储局域网(SAN)等新的技术或应用方案不断涌现,新的存储体系结构和解决方案层出不穷,服务器存储技术由直接连接存储(DAS)向存储网络技术(NAS)方面扩展.在中低端,随着硬件技术的不断发展,在强大市场需求的推动下,本地化的、基于直接连接的磁盘阵列存储技术,在速度、性能、存储能力等方面不断地迈上新台阶.并且,为了满足用户对存储数据的安全、存取速度和超大的存储容量的需求,磁盘阵列存储技术也从讲求技术创新、重视系统优化,以技术方案为主导的技术推动期逐渐进入了强调工业标准、着眼市场规模,以成熟产品为主导的产品普及期.
回顾磁盘阵列的发展历程,一直和SCSI技术的发展紧密关联,一些厂商推出的专有技术,如IBM的SSA(Serial Storage Architecture)技术等,由于兼容性和升级能力不尽如人意,在市场上的影响都远不及SCSI技术广泛.由于SCSI技术兼容性好,市场需求旺盛,使得SCSI技术发展很快.从最原始5MB/s传输速度的SCSI-1,一直发展到现在LVD接口的160MB/s传输速度的Ultra 160 SCSI,320MB/s传输速度的Ultra 320 SCSI接口也将在2001年出现(见表1).从当前市场看,Ultra 3 SCSI技术和RAID(Redundant Array of Inexpensive Disks)技术还应是磁盘阵列存储的主流技术.
SCSI技术
SCSI本身是为小型机(区别于微机而言)定制的存储接口,SCSI协议的Version 1 版本也仅规定了5MB/s传输速度的SCSI-1的总线类型、接口定义、电缆规格等技术标准.随着技术的发展,SCSI协议的Version 2版本作了较大修订,遵循SCSI-2协议的16位数据带宽,高主频的SCSI存储设备陆续出现并成为市场的主流产品,也使得SCSI技术牢牢地占据了服务器的存储市场.SCSI-3协议则增加了能满足特殊设备协议所需要的命令集,使得SCSI协议既适应传统的并行传输设备,又能适应最新出现的一些串行设备的通讯需要,如光纤通道协议(FCP)、串行存储协议(SSP)、串行总线协议等.渐渐地,“小型机”的概念开始弱化,“高性能计算机”和“服务器”的概念在人们的心目中得到强化,SCSI一度成为用户从硬件上来区分“服务器”和PC机的一种标准.
通常情况下,用户对SCSI总线的关心放在硬件上,不同的SCSI的工作模式意味着有不同的最大传输速度.如40MB/s的Ultra SCSI、160MB/s的Ultra 3 SCSI等等.但最大传输速度并不代表设备正常工作时所能达到的平均访问速度,也不意味着不同SCSI工作模式之间的访问速度存在着必然的“倍数”关系.SCSI控制器的实际访问速度与SCSI硬盘型号、技术参数,以及传输电缆长度、抗干扰能力等因素关系密切.提高SCSI总线效率必须关注SCSI设备端的配置和传输线缆的规范和质量.可以看出,Ultra 3模式下获得的实际访问速度还不到Ultra Wide模式下实际访问速度的2倍.
一般说来,选用高速的SCSI硬盘、适当增加SCSI通道上连接硬盘数、优化应用对磁盘数据的访问方式等,可以大幅度提高SCSI总线的实际传输速度.尤其需要说明的是,在同样条件下,不同的磁盘访问方式下获得的SCSI总线实际传输速度可以相差几十倍,对应用的优化是获得高速存储访问时必须关注的重点,而这却常常被一些用户所忽视.按4KB数据块随机访问6块SCSI硬盘时,SCSI总线的实际访问速度为2.74MB/s,SCSI总线的工作效率仅为总线带宽的1.7%;在完全不变的条件下,按256KB的数据块对硬盘进行顺序读写,SCSI总线的实际访问速度为141.2MB/s,SCSI总线的工作效率高达总线带宽的88%.
随着传输速度的提高,信号传输过程中的信号衰减和干扰问题显得越来越突出,终结器在一定程度上可以起到降低信号波反射,改善信号质量的作用.同时,LVD(Low-Voltage Differential)技术的应用也越来越多.LVD工作模式是和SE(Single-Ended)模式相对应的,它可以很好地抵抗传输干扰,延长信号的传输距离.同时,Ultra 2 SCSI和Ultra 3 SCSI模式也通过采用专用的双绞型SCSI电缆来提高信号传输的质量.
在磁盘阵列的概念中,大容量硬盘并不是指单个硬盘容量大,而是指将单个硬盘通过RAID技术,按RAID 级别组合成更大容量的硬盘.所以在磁盘阵列技术中,RAID技术是比较关键的,同时,根据所选用的RAID级别的不同,得到的“大硬盘”的功能也有不同.
RAID是一项非常成熟的技术,但由于其价格比较昂贵,配置也不方便,缺少相对专业的技术人员,所以应用并不十分普及.据统计,全世界75%的服务器系统目前没有配置RAID.由于服务器存储需求对数据安全性、扩展性等方面的要求越来越高,RAID市场的开发潜力巨大.RAID技术是一种工业标准,各厂商对RAID级别的定义也不尽相同.目前对RAID级别的定义可以获得业界广泛认同的只有4种,RAID 0、RAID 1、RAID 0+1和RAID 5.
RAID 0是无数据冗余的存储空间条带化,具有低成本、极高读写性能、高存储空间利用率的RAID级别,适用于Video / Audio信号存储、临时文件的转储等对速度要求极其严格的特殊应用.但由于没有数据冗余,其安全性大大降低,构成阵列的任何一块硬盘损坏都将带来数据灾难性的损失.所以,在RAID 0中配置4块以上的硬盘,对于一般应用来说是不明智的.
RAID 1是两块硬盘数据完全镜像,安全性好,技术简单,管理方便,读写性能均好.但其无法扩展(单块硬盘容量),数据空间浪费大,严格意义上说,不应称之为“阵列”.
RAID 0+1综合了RAID 0和RAID 1的特点,独立磁盘配置成RAID 0,两套完整的RAID 0互相镜像.它的读写性能出色,安全性高,但构建阵列的成本投入大,数据空间利用率低,不能称之为经济高效的方案.
RAID 5是目前应用最广泛的RAID技术.各块独立硬盘进行条带化分割,相同的条带区进行奇偶校验(异或运算),校验数据平均分布在每块硬盘上.以n块硬盘构建的RAID 5阵列可以有n-1块硬盘的容量,存储空间利用率非常高(见图6).任何一块硬盘上数据丢失,均可以通过校验数据推算出来.它和RAID 3最大的区别在于校验数据是否平均分布到各块硬盘上.RAID 5具有数据安全、读写速度快,空间利用率高等优点,应用非常广泛,但不足之处是1块硬盘出现故障以后,整个系统的性能大大降低.
对于RAID 1、RAID 0+1、RAID 5阵列,配合热插拔(也称热可替换)技术,可以实现数据的在线恢复,即当RAID阵列中的任何一块硬盘损坏时,不需要用户关机或停止应用服务,就可以更换故障硬盘,修复系统,恢复数据,对实现HA(High Availability)高可用系统具有重要意义.
各厂商还在不断推出各种RAID级别和标准.例如更高安全性的,从RAID控制器开始镜像的RAID;更快读写速度的,为构成RAID的每块硬盘配置CPU和Cache的RAID等等,但都不普及.用IDE硬盘构建RAID的技术是新出现的一个技术方向,对市场影响也较大,其突出优点就是构建RAID阵列非常廉价.目前IDE RAID可以支持RAID 0、RAID 1和RAID 0+1三个级别,最多支持4块IDE硬盘.由于受IDE设备扩展性的限制,同时,也由于IDE设备也缺乏热可替换的技术支持的原因,IDE RAID的应用还不多.
总之,发展是永恒的主题,在服务器存储技术领域也不例外.一方面,一些巨头厂商尝试推出新的概念或标准,来领导服务器及存储技术的发展方向,较有代表性的如Intel力推的IA-64架构及存储概念;另一方面,致力于存储的专业厂商以现有技术和工业标准为基础,推动SCSI、RAID、Fibre Channel等基于现有存储技术和方案快速更新和发展.在市场经济条件下,检验技术发展的唯一标准是市场的认同.市场呼唤好的技术,而新的技术必须起到推动市场向前发展作用时才能被广泛接受和承认.随着高性能计算机市场的发展,高性能比、高可靠性、高安全性的存储新技术也会不断涌现.
现在市场上的磁盘阵列产品有很多,用户在选择磁盘阵列产品的过程中,也要根据自己的需求来进行选择,现在列举几个磁盘阵列产品,同时也为需要磁盘阵列产品的用户提供一些选择.表2列出了几种磁盘阵列的主要技术指标.
什么是磁盘阵列?
磁盘阵列简介
磁盘阵列简称RAID(RedundantpArrayspofpInexpensivepDisks),有“价格便宜且多余的磁盘阵列”之意。其原理是利用数组方式来作磁盘组,配合数据分散排列的设计,提升数据的安全性。磁盘阵列主要针对硬盘,在容量及速度上,无法跟上CPU及内存的发展,提出改善方法。磁盘阵列是由很多便宜、容量较小、稳定性较高、速度较慢磁盘,组合成一个大型的磁盘组,利用个别磁盘提供数据所产生的加成效果来提升整个磁盘系统的效能。同时,在储存数据时,利用这项技术,将数据切割成许多区段,分别存放在各个硬盘上。p
磁盘阵列还能利用同位检查(ParitypCheck)的观念,在数组中任一颗硬盘故障时,仍可读出数据,在数据重构时,将故障硬盘内的数据,经计算后重新置入新硬盘中。
磁盘阵列的由来:p
由美国柏克莱大学(UniversitypofpCalifornia-Berkeley)在1987年,发表的文章:“ApCasepforpRedundantpArrayspofpInexpensivepDisks”。文章中,谈到了RAID这个字汇,而且定义了RAID的5层级。柏克莱大学研究其研究目的为,反应当时CPU快速的性能。CPU效能每年大约成长30~50%,而硬磁机只能成长约7%。研究小组希望能找出一种新的技术,在短期内,立即提升效能来平衡计算机的运算能力。在当时,柏克莱研究小组的主要研究目的是效能与成本。p
另外,研究小组也设计出容错(fault-tolerance),逻辑数据备份(logicalpdatapredundancy),而产生了RAIDp理论。研究初期,便宜(Inexpensive)的磁盘也是主要的重点,但后来发现,大量便宜磁盘组合并不能适用于现实的生产环境,后来Inexpensive被改为independence,许多独立的磁盘组。p
磁盘阵列,时事所趋:p
自有PC以来,硬盘是最常使用的储存装置。但在整个计算机系统架构中,跟CPU与RAM来比,硬盘的速度是PC中最弱的设备之一。所以,为了加速计算机整体的数据流量,增加储存的吞吐量,进阶改进硬盘数据的安全,磁盘阵列的设计因应而生。p
硬盘随着科技的日新月异,现在其容量已达80GB以上,转速到了2万转,甚至25000转,而且价格实在是很便宜,再加现在企业流行,人力资源规画(EnterprisepResourcepPlanning:ERP)是每个公司建构网络的主要目标。所以,利用局域网络来传递数据,服务器所使用的硬盘显得非常重要,除了容量大、速度快之外,稳定更是基本要求。基于此因,磁盘阵列开始广泛的应用在个人计算机上。p
磁盘阵列其样式有三种,一是外接式磁盘阵列柜、二是内接式磁盘阵列卡,三是利用软件来仿真。外接式磁盘阵列柜最常被使用大型服务器上,具可热抽换(HotpSwap)的特性,不过这类产品的价格都很贵。内接式磁盘阵列卡,因为价格便宜,但需要较高的安装技术,适合技术人员使用操作。另外利用软件仿真的方式,由于会拖累机器的速度,不适合大数据流量的服务器。p
由上述可知,现在IDE磁盘阵列大行其道的道理;IDE接口硬盘的稳定度与效能表现已有很大的提升,加上成本考量,所以采用IDE接口硬盘来作为磁盘阵列的决解方案,可说是最佳的方式
在网络存储中,磁盘阵列是一种把若干硬磁盘驱动器按照一定要求组成一个整体,整个磁盘阵列由阵列控制器管理的系统。磁带库是像自动加载磁带机一样的基于磁带的备份系统,磁带库由多个驱动器、多个槽、机械手臂组成,并可由机械手臂自动实现磁带的拆卸和装填。
它能够提供同样的基本自动备份和数据恢复功能,但同时具有更先进的技术特点。掌握网络存储设备的安装、操作使用也是网管员必须要学会的。
在架构无线局域网时,对无线路由器、无线网络桥接器AP、无线网卡、天线等无线局域网产品进行安装、调试和应用操作。
磁盘阵列的主流结构:
磁盘阵列作为独立系统在主机外直连或通过网络与主机相连。磁盘阵列有多各端口可以被不同主机或不同端口连接。一个主机连接阵列的不同端口可提升传输速度。
和目前PC用单磁盘内部集成缓存一样,在磁盘阵列内部为加快与主机交互速度,都带有一定量的缓冲存储器。主机与磁盘阵列的缓存交互,缓存与具体的磁盘交互数据。
在应用中,有部分常用的数据是需要经常读取的,磁盘阵列根据内部的算法,查找出这些经常读取的数据,存储在缓存中,加快主机读取这些数据的速度,而对于其他缓存中没有的数据,主机要读取,则由阵列从磁盘上直接读取传输给主机。对于主机写入的数据,只写在缓存中,主机可以立即完成写操作。然后由缓存再慢慢写入磁盘。
磁盘阵列简述:
磁盘阵列是一种把若干硬磁盘驱动器按照一定要求组成一个整体,整个磁盘阵列由阵列控制器管理的系统。冗余磁盘阵列RAID(Redundant Array of Independent Disks)技术1987年由加州大学伯克利分校提出,最初的研制目的是为了组合小的廉价磁盘来代替大的昂贵磁盘,以降低大批量数据存储的费用(当时RAID称为Redundant Array of Inexpensive Disks 廉价的磁盘阵列),同时也希望采用冗余信息的方式,使得磁盘失效时不会使对数据的访问受损失,从而开发出一定水平的数据保护技术。
磁盘阵列的工作原理与特征: 来源:https://www.xn--gnro6f3ybz9cf40b52n92d1s3et5a.cn/xwzx/202412-1.html
RAID的基本结构特征就是组合(Striping),捆绑2个或多个物理磁盘成组,形成一个单独的逻辑盘。组合套(Striping Set)是指将物理磁盘组捆绑在一块儿。在利用多个磁盘驱动器时,组合能够提供比单个物理磁盘驱动器更好的性能提升。 数据是以块(Chunks)的形式写入组合套中的,块的尺寸是一个固定的值,在捆绑过程实施前就已选定。块尺寸和平均I/O需求的尺寸之间的关系决定了组合套的特性。总的来说,选择块尺寸的目的是为了最大程度地提高性能,以适应不同特点的计算环境应用。
磁盘阵列优点:
磁盘阵列有许多优点:首先,提高了存储容量;其次,多台磁盘驱动器可并行工作,提高了数据传输率;...RAID技术确实提供了比通常的磁盘存储更高的性能指标、数据完整性和数据可用性,尤其是在当今面临的I/O总是滞后于CPU性能的瓶颈问题越来越突出的情况下,RAID解决方案能够有效地弥补这个缺口。
阵列技术的介绍:
RAID技术是一种工业标准,各厂商对RAID级别的定义也不尽相同。目前对RAID级别的定义可以获得业界广泛认同的有4种,RAID 0、RAID 1、RAID 0+1和RAID 5,我们常见的主板自带的阵列芯片或阵列卡能支持的模式有:RAID 0、RAID 1、RAID 0+1。
1) RAID 0是无数据冗余的存储空间条带化,它将所有硬盘构成一个磁盘阵列,可以同时对多个硬盘做读写动作,但是不具备备份及容错能力,具有成本低、读写性能极高、存储空间利用率高等特点,在理论上可以提高磁盘子系统的性能。
2) RAID 1是两块硬盘数据完全镜像,可以提高磁盘子系统的安全性,技术简单,管理方便,读写性能均好。但它无法扩展(单块硬盘容量),数据空间浪费大,严格意义上说,不应称之为“阵列”。
3) RAID 0+1综合了RAID 0和RAID 1的特点,独立磁盘配置成RAID 0,两套完整的RAID 0互相镜像。它的读写性能出色,安全性高,但构建阵列的成本投入大,数据空间利用率低,不能称之为经济高效的方案。
常见的阵列卡芯片有三种:Promise(乔鼎信息)、highpoint、ami(美商安迈)。这三种芯片都有主板集成或独立的阵列卡这二种形式的产品。我们主要用到的是Promise阵列卡,经过测试在无盘中稳定,并且不容易坏Promise常见的阵列芯片有:Promise Fasttrak 66、Fasttrak 100、Fasttrak 133、20262、20265、20267、20270、Fasttrak TX2、Fasttrak TX4、Fasttrak TX2000,TX4000.Highpoint常见的阵列芯片有:highpoint 370、370a、372、372a。AMI / LSI Logic MegaRAID 这种芯片的产品我们用得很少,现在知道的有艾崴 WO2-R主板上集成了American Megatrends MG80649 控制器,其阵列卡的产品也没有使用过。
注意事项:
1) 用来创建磁盘阵列的硬盘一般需成对使用。
2) 强烈建议使用型号、容量、品牌均一致的四个硬盘来做阵列。
3) 阵列卡和一部分集成的阵列芯片支持双阵列,当您使用四个硬盘来做阵列时,建议设置为双阵列。但如果主板集成的是Promise类芯片,几乎都不支持创建双阵列。(4)、没有安装对应的阵列驱动程序或驱动程序不对,而又设置为由阵列启动时,NT服务器启动时将会蓝屏。任何创建阵列或者重建阵列的操作都将清除硬盘或者阵列上的所有现有数据!
阵列卡的作用,简单的一句话就是加快网吧的速度,本为一个IDE的硬盘在带30以上就会造成瓶颈,速度就会慢下来,想提高速度一定得做阵列,这样不但速度快,以后加机器也不会有太大的影响。
做阵列注意的是:
阵列的一个误区就是大家还是把磁盘分开来看,作为阵列,你只能把做阵列的硬盘当成一个大的硬盘!在拷盘前我们用SFDISK(或者用其它分区软件,不用FDISK.EXE,因为FDISK.EXE只认80G,而一般做阵列后,硬盘都大于80G)对其进行分区,然后用GHOST将盘刻到阵列硬盘上面!
只要硬盘的位置与数据线不脱离,阵列卡如果换同名的阵列卡,其内容是不会改变的,因为阵列卡中相关参数设置保存在了硬盘当中。
磁盘阵列
1. 什么是磁盘阵列(Disk Array)?
磁盘阵列(Disk Array)是由一个硬盘控制器来控制多个硬盘的相互连接,使多个硬盘的读写同步,减少错误,增加效率和可靠度的技术。
2.什么是RAID?
RAID是Redundant Array of Inexpensive Disk的缩写,意为廉价冗余磁盘阵列,是磁盘阵列在技术上实现的理论标准,其目的在于减少错误、提高存储系统的性能与可靠度。常用的等级有1、3、5级等。
3.什么是RAID Level 0来源:https://www.xn--gnro6f3ybz9cf40b52n92d1s3et5a.cn/cshi/202502-180.html?
RAID Level 0是Data Striping(数据分割)技术的实现,它将所有硬盘构成一个磁盘阵列,可以同时对多个硬盘做读写动作,但是不具备备份及容错能力,它价格便宜,硬盘使用效率最佳,但是可靠度是最差的。
以一个由两个硬盘组成的RAID Level 0磁盘阵列为例,它把数据的第1和2位写入第一个硬盘,第三和第四位写入第二个硬盘……以此类推,所以叫“数据分割",因为各盘数据的写入动作是同时做的,所以它的存储速度可以比单个硬盘快几倍。
但是,这样一来,万一磁盘阵列上有一个硬盘坏了,由于它把数据拆开分别存到了不同的硬盘上,坏了一颗等于中断了数据的完整性,如果没有整个磁盘阵列的备份磁带的话,所有的数据是无法挽回的。因此,尽管它的效率很高,但是很少有人冒着数据丢失的危险采用这项技术。
4.什么是RAID Level 1?
RAID Level 1使用的是Disk Mirror(磁盘映射)技术,就是把一个硬盘的内容同步备份复制到另一个硬盘里,所以具备了备份和容错能力,这样做的使用效率不高,但是可靠性高。
5.什么是RAID Level 3?
RAID Level 3采用Byte-interleaving(数据交错存储)技术,硬盘在SCSI控制卡下同时动作,并将用于奇偶校验的数据储存到特定硬盘机中,它具备了容错能力,硬盘的使用效率是安装几个就减掉一个,它的可靠度较佳。
6.什么是RAID Level 5?
RAID Level 5使用的是Disk Striping(硬盘分割)技术,与Level 3的不同之处在于它把奇偶校验数据存放到各个硬盘里,各个硬盘在SCSI控制卡的控制下平行动作,有容错能力,跟Level 3一样,它的使用效率也是安装几个再减掉一个。
7.什么是热插拔硬盘?
热插拔硬盘英文名为Hot-Swappable Disk,在磁盘阵列中,如果使用支持热插拔技术的硬盘,在有一个硬盘坏掉的情况下,服务器可以不用关机,直接抽出坏掉的硬盘,换上新的硬盘。一般的商用磁盘阵列在硬盘坏掉的时候,会自动鸣叫提示管理员更换硬盘。
磁盘阵列(Disk array)原理
为什么需要磁盘阵列? 如何增加磁盘的存取(acces)速度,如何防止数据因磁盘的故障而失落及如 何有效的利用磁盘空间,一直是电脑专业人员和用户的困忧;而大容量磁盘的价 格非常昂贵,对用户形成很大的负担。磁盘阵列技术的产生一举解决了这些问题。
过去十年来,CPU的处理速度几乎是几何级数的跃升,内存(memory)的 存取速度亦大幅增加,而数据储存装置——它要是磁盘(hard disk)——的存取 速度相较之下。较为缓慢。整个I/0吞吐量不能和系统匹配,形成电脑系统的瓶 颈,降低了电脑系统的整体性能(throughout)若不能有效的提升磁盘的存取速 度,CPU、内存及磁盘间的不平衡将使CPU及内存的改进形成浪费。
目前改进磁盘存取速度的方式主要有两种。一是磁盘快取控制(disk cache controller),它将从磁盘读取的数据存在快取内存(cache memory)中以减少磁 盘存取的次数。数据的读写都在cache内存中进行,大幅增加存取的速度,如要读 取的数据不在cache内存中,或要写数据到磁盘时,才做磁盘的存取动作。这种方 式在单工期环境(Single—tasking envioronment)如DOS之下。对大量数据的 存取有很好的性能(量小且频繁的存取则不然)。但在多工(multi—tasking)环 境之下(因为要不停的作数据交换(swapping)的动作)或数据库(database) 的存取(因每一记录都很小)就不能显示其性能。这种方式没有任何安全保障。 来源:https://www.hexox.com.cn/xwzx/202412-45.html
其一是使用磁盘阵列的技术。磁盘阵列是把多个磁盘组成一个阵列,当作单 一磁盘使用,它将数据以分段(striping)的方式储存在不同的磁盘中,存取数据 时,阵列中的相关磁盘一起动作:大幅减低数据的存取时间,同时有更佳的空间 利用率。磁盘阵列所利用的不同的技术,称为RAID level,不同的level针对不 同的系统及应用,以解决数据安全的问题。
一般高性能的磁盘阵列都足以硬件的形式来达成、进—步的把磁盘cache控制 及磁盘阵列结合在—个控制器(RAID controler)或控制卡个,针对个同的用户 解决人们对磁盘输出/入系统的四大要求:
(1)增加存取速度。
(2)容错(fault tolerance),即安全性。
(3)有效的利用磁盘空间。
(4)尽量的平衡CPU,内存及磁盘的性能并异,提高电脑的整体工作性能。
磁盘阵列原理
1987年,加州伯克利大学的一位人员发表了名为“磁盘阵列研究”的论文, 正式提到了RAID也就是滋盘阵列,论文提出廉价的5.25”及3.5”的硬盘也能如 大机器上的8”盘能提供人容量、高性能和数据的一致性,并详述了RAIDl至5 的技术。 磁盘阵列针对不同的应用使用的不同技术,称为RAID level,RAID是Redundant Array of Inexpenslve Disks的缩写,而每一level代表一种技术,目前 业界公认的标准是RAID0—RAID5。这个level并个代表技术的高低,level5并不高于level3,level1也个低于level4。字于要选样哪一种RAID level的产品,纯视用户的操作环境(Operating envir0nment)及应用(application)而定,与level 的高低没有必然的关系。RAID0没有安全的保障,仅其快速,所以适合高速I/0 的系统;RAIDl适用于需安全性又要兼顾速度的系统,RAID2及RAID3适用于 大型电脑及影像、CAD/CAM等处理;RAID5多用于0LTP,因有余融机构及 大型数据处理中心的迫切需要,故使用较多而较有名气,但也因此形成很多人对 磁盘阵列的误解,以为磁盘阵列非要RAID5不可;RAID4较少使用、和RAID5 有其共同之处,但RAID4适合大量数据的存取。其他如RAID6,RAID7。乃至 RAIDl0、50、100等,都是厂商各做各的,并无一致的标准,在此不作说明。
RAID1
RAID1是使用磁盘镜像(disk muroring)的技术,磁盘镜像应用在RAIDl 之前就在很多系统中使用,它的方式是在工作磁盘(working disk)之外再加一 额外的备份磁盘(backup disk)两个磁盘所储存的数据安全一致。数据在写入工 作磁盘同时也写入备份磁盘。
RAID2
RAID2是把数据分散为位元/位元组(bit/byte)或块(b1ock),加入海明码Hamming Code、在磁盘阵列中作间隔写入(Interleaving)到每个磁盘小。而 且地址(address)都一样,也就是在各个磁盘中,其数据都在相同的磁道(cylinder or track)及扇区中。RAID2又称为并行阵列(parallel array)其设计足使 用共轴同步(spindle synchronize)的技术,存取数据时、控个磁盘阵列—起动 作,在各个磁盘的相同位置作平行存取,所以有最好的存取时间(auesstime),共 总线(bus)是特别的设计以大带宽并行传输所存取的数据,所以有最好的传输时 间(transfer time)。在人型档案的存取应用,RAID2有最好的件能,仅如果档 案太小,会将其性能批下来。因为磁盘的存取足以期区为单位。而RAID2的存取是所有磁盘平行动作,而且是作单位元或位元组的存取。故小于—个扇区的数据 最会使其件能大打折扣。RAID2是设计给需要连续且大量数据的电脑使用的、如 大型电脑(mainframe to supercomputer)、作影像处理或CAD/CAM的工作站 (workstation)等,并个适用于—般的多用户环境网络服务器(network server)。 小型机或PC。
RAID3
RAID3的数据储存及存取方式都和RAID2一样,仅在安今方面以奇偶较验 (parity check)取代海明码做错误校正及检测,所以只需要—个额外的校检磁盘 (parity disk)。奇偶校验值的计算足以各个磁盘的相对应位作XOR的逻辑运算, 然后将结果写入奇偶校验磁盘,仟何数据的修改都要做奇偶校验计算。 来源:https://www.hexox.com.cn/cshi/202412-37.html
RAID4
RAID4也使用一个校验磁盘,但和RAID3不一样,RAID4的方式是RAID0 加上一个校验磁盘。
RAID5
RAID5和RAID4相似但避免了RAID4的瓶颈,方法是不用校验磁盘而将校 验数据以循环的方式放在每一个磁盘中,RAID5的控制比较复杂,尤其是利用硬件对磁盘阵列的控制,因为这种方式的应用比其他的RAID level要掌握更多的事情,更多的输出/入需求,既要速度快,又要处理数据,计算校验值,做错误 校正等,所以价格较高,其应用最好是0LTP,至于用于大型文件,不见得有最 佳的性能。
RAID的对比: 下面几个表列是RAID的一些性质:
操作 工作模式 最少硬盘量 可用容量 适用范围
RAID0 磁盘延伸和数据分布 2 T PC服务器和图形工作站
RAIDl 数据分布和镜像 2 T/2
RAID2 共轴同步,并行传输,ECC 3 视结构而定 大档案且输入输出不频繁的应用 如:影像处理和CAD/CAM等
RAID3 共轴同步,并行传输,Parity 3 Tx(n—1)/n 来源:https://www.hexox.com.cn/zhishi/202412-40.html
RAID4 数据分布,固定Parity 3 Tx(n—1)/n
RAID5 数据分布,分布Parity 3 Tx(n—1)/n 银行、金融、股市、数据库等大 型数据处理中心OLTP应用
RAID的性能与可用性
RAID Level 用户数据利用率 BandWidth Performance Transaction Performance 数据可用性
RAID0 1 0.25 1 0.0005
RAID1 0.5 0.25 0.85 1
RAID2 0.67 1 0.25 0.9999
RAID3 0.75 1 0.25 0.9999
RAID4 0.75 0.25 0.61 0.9999
RAID5 0.75 0.25 0.61 0.9999 来源:https://www.hexox.com.cn/zhishi/202412-63.html
以上数据基于4个磁盘,传输块大小lK,75%的读概率,数据可用性的计算 基于同样的损坏概率。
RAID的概述
RAID0
没有任何额外的磁盘或空间作安全准备,所以一般人不重视它,这是误解。 其实它有最好的效率及空间利用率,对于追求效率的应用,非常理想,可同时用 其他的RAID level或其他的备份方式以补其不足,保护重要的数据。
RAID1
最佳的安全性,100%不停机,即使有一个磁盘损坏也能照常作业而不影响 其效能(对能并行存取的系统稍有影响),因为数据是作重复储存。RAIDl的并行 读取几乎有RAID0的性能、因为可同时读取相互镜像的磁盘;写入也只比RAID0略逊,因为同时写入两个磁盘并没有增加多少工作。虽比RAID0要增加—倍的 磁盘做镜像,但作为采用磁盘阵列的进入点,它是最便宜的一个方案,是新设磁 盘陈列的用户之最佳选择。 来源:https://www.hexox.com.cn/xwzx/202412-110.html
RAlD5
RAID5在不停机及容错的表现都很好,但如有磁盘故障。对性能的影向较大, 大容量的快取内存有助于维持性能,但在0LTP的应用中,因为每—笔数据或记 录(record)都很小,对磁盘的存取频繁。故有—定程度的影响。某磁盘故障 时,读取该磁盘的数据需把共用同一校验值分段的所有数据及校验值读出来、再把故障磁盘的数据计算出来;写入时,除了要重覆读取的程序外,还要再做校验值的计算,然后写入更新的数据及校验值;等换上新的磁盘,系统要计算整个磁 盘阵列的数据以回复故障磁盘的数据,时间要很长,如系统的工作负载很重的话, 有很多输出/入的请求征排队等候时,会把系统的性能拉下来。仅如使用硬件磁 盘阵列的话,其件能就可以得到大幅度的改进,因为硬件磁盘阵列如Arena系列 本身有内置的CPU与个机系统并行运作。所有存取磁盘的输出入工作都在磁盘陈列本身完成,不花费主机的时间,配合磁盘陈列的cache内存的使用,可以提高 系统的整体性能,而优越的SCSI控制更能增加数据的传输速率,即使枉磁盘故障 的情况下,主机系统的件能也不会有明显的降低。RAID5要做的事情太多,所以 价格较贵。不适于小系统,但如果是大系统使用大的磁盘阵列的话,RAID5却是 最便宜的方案。
总而言之,RAID0及RAIDl最适合PC服务器及图形工作站的用户,提供 最佳的性能及最便宜的价格。以低成本符合市场的需求。RAID2及RAID3适用 于大档案输入输出需求个频繁的应用如影像处理及CAD/CAM等;而RAID5 则适用于银行、金融、股市、数据库等大列数据处理中心的0LTP应用;RAID4 与RAID5有相同的特件及用方式,但其较适用于大型文件的读取。
磁盘阵列的额外容错功能
事实上容错功能已成为磁盘阵列最受清睐的特性,为了加强容错的功能以及使系统在磁盘故障的情况下能迅速的重建数据,以维持系统的性能,一般的磁盘 阵列系统都可使用热备份(hot spare or hot standby drive)的功能,所谓热备份是在建立(configure)磁盘阵列系统的时候,将其中一磁盘指定为后备磁盘, 此一磁盘在平常并不操作,仅若阵列中某一磁盘发生故障时,磁盘阵列即以后备 磁盘取代故障磁盘,并自动将故障磁盘的数据重建(rebuild)在后备磁盘之上, 因为反应快速,加上cache内存减少了磁盘的存取,所以数据重建很快即可完成,对 系统的性能影响不大。对丁要求不停机的大型数据处理中心或控制小心而言,热 备份更是一项重要的功能,因为可避免晚间或无人守护时发生磁盘故障所引起的 种种不便。
备份盘又有热备份与温备份之分,热备份税和温备份的不同在于热备份盘 和阵列—起运转,一有故障时马上备援,而温备份盘虽然带电但并个运转,需要 备援时才启动。两者分别在是否运转及启动的时间,仅温备份并不运转,理论上有较长的寿命。另一个额外的容错功能是坏期区转移(bad sector reassignment)。坏扇区是磁盘故障的主要原因,通常磁盘在读写时发牛坏扇区的 情况即表示此磁盘故障。不能冉作读写,甚至有很多系统会因为不能完成读写的 动作而死机,仅若因为某一扇区的损坏而使工作不能完成或要更换磁盘,则使得 系统性能大打折扣,而系统的维护成本也未免太高了,坏扇区转移是当磁盘阵列 系统发现磁盘有坏扇区时,以另一空白的且无故障的扇区取代该扇区,以延长磁盘 的使用寿命,减少坏磁盘的发生率以及系统的维护成本。所以坏扇区转移功能使 磁盘阵列具有更好的容错性,同时使整个系统村最好的成本效益比。其他如可外 接电池备援磁盘阵列的快取内存,以避免突然断电时数据尚未写回磁盘而丢失; 或在RAIDl时作写入一致性的检查等,虽是小技术,但亦不可忽视。 来源:https://www.hexox.com.cn/cshi/202412-42.html
深入了解RAID
2000-9-29·元凯宁·PCHDD
RAID是由美国加州大学伯克利分校的D.A. Patterson教授在1988年提出的。RAID是Redundent Array of Inexpensive Disks的缩写,直译为“廉价冗余磁盘阵列”,也简称为“磁盘阵列”。后来RAID中的字母I被改作了Independent,RAID就成了“独立冗余磁盘阵列”,但这只是名称的变化,实质性的内容并没有改变。可以把RAID理解成一种使用磁盘驱动器的方法,它将一组磁盘驱动器用某种逻辑方式联系起来,作为逻辑上的一个磁盘驱动器来使用。一般情况下,组成的逻辑磁盘驱动器的容量要小于各个磁盘驱动器容量的总和。RAID的具体实现可以靠硬件也可以靠软件,Windows NT操作系统就提供软件RAID功能。RAID一般是在SCSI磁盘驱动器上实现的,因为IDE磁盘驱动器的性能发挥受限于IDE接口(IDE只能接两个磁盘驱动器,传输速率最高1.5MBps)。IDE通道最多只能接4个磁盘驱动器,在同一时刻只能有一个磁盘驱动器能够传输数据,而且IDE通道上一般还接有光驱,光驱引起的延迟会严重影响系统速度。SCSI适配器保证每个SCSI通道随时都是畅通的,在同一时刻每个SCSI磁盘驱动器都能自由地向主机传送数据,不会出现像IDE磁盘驱动器争用设备通道的现象。
RAID的优点
1.成本低,功耗小,传输速率高。在RAID中,可以让很多磁盘驱动器同时传输数据,而这些磁盘驱动器在逻辑上又是一个磁盘驱动器,所以使用RAID可以达到单个的磁盘驱动器几倍、几十倍甚至上百倍的速率。这也是RAID最初想要解决的问题。因为当时CPU的速度增长很快,而磁盘驱动器的数据传输速率无法大幅提高,所以需要有一种方案解决二者之间的矛盾。RAID最后成功了。
2.可以提供容错功能。这是使用RAID的第二个原因,因为普通磁盘驱动器无法提供容错功能,如果不包括写在磁盘上的CRC(循环冗余校验)码的话。RAID和容错是建立在每个磁盘驱动器的硬件容错功能之上的,所以它提供更高的安全性。
3.RAID比起传统的大直径磁盘驱动器来,在同样的容量下,价格要低许多。
RAID的分级
1.RAID0级,无冗余无校验的磁盘阵列。数据同时分布在各个磁盘驱动器上,没有容错能力,读写速度在RAID中最快,但因为任何一个磁盘驱动器损坏都会使整个RAID系统失效,所以安全系数反倒比单个的磁盘驱动器还要低。一般用在对数据安全要求不高,但对速度要求很高的场合。
2.RAID1级,镜象磁盘阵列。每一个磁盘驱动器都有一个镜像磁盘驱动器,镜像磁盘驱动器随时保持与原磁盘驱动器的内容一致。RAID1具有最高的安全性,但只有一半的磁盘空间被用来存储数据。主要用在对数据安全性要求很高,而且要求能够快速恢复被损坏的数据的场合。
3.RAID2级,纠错海明码磁盘阵列。磁盘驱动器组中的第一个、第二个、第四个……第2n个磁盘驱动器是专门的校验盘,用于校验和纠错,例如七个磁盘驱动器的RAID2,第一、二、四个磁盘驱动器是纠错盘,其余的用于存放数据。使用的磁盘驱动器越多,校验盘在其中占的百分比越少。RAID2对大数据量的输入输出有很高的性能,但少量数据的输入输出时性能不好。RAID2很少实际使用。
4.RAID3和RAID4,奇校验或偶校验的磁盘阵列。不论有多少数据盘,均使用一个校验盘,采用奇偶校验的方法检查错误。任何一个单独的磁盘驱动器损坏都可以恢复。RAID3和RAID4的数据读取速度很快,但写数据时要计算校验位的值以写入校验盘,速度有所下降。RAID3和RAID4的使用也不多。
5.RAID5级,无独立校验盘的奇偶校验磁盘阵列来源:https://www.xn--4kr3px0kd31czgcy5ah28ay0l.cn/cshi/202502-202.html。同样采用奇偶校验来检查错误,但没有独立的校验盘,校验信息分布在各个磁盘驱动器上。RAID5对大小数据量的读写都有很好的性能,被广泛地应用。
从RAID1到RAID5的几种方案中,不论何时有磁盘损坏,都可以随时拔出损坏的磁盘再插入好的磁盘(需要硬件上的热插拔支持),数据不会受损,失效盘的内容可以很快地重建,重建的工作也由RAID硬件或RAID软件来完成。但RAID0不提供错误校验功能,所以有人说它不能算作是RAID,其实这也是RAID0为什么被称为0级RAID的原因——0本身就代表“没有”。
RAID的应用
当前的PC机,整个系统的速度瓶颈主要是硬盘。虽然不断有Ultra DMA33、DMA66、DMA100等快速的标准推出,但收效不大。在PC中,磁盘速度慢一些并不是太严重的事情。但在服务器中,这是不允许的,服务器必须能响应来自四面八方的服务请求,这些请求大多与磁盘上的数据有关,所以服务器的磁盘子系统必须要有很高的输入输出速率。为了数据的安全,还要有一定的容错功能。RAID提供了这些功能,所以RAID被广泛地应用在服务器体系中。
RAID提供的容错功能是自动实现的(由RAID硬件或是RAID软件来做)。它对应用程序是透明的,即无需应用程序为容错做半点工作。要得到最高的安全性和最快的恢复速度,可以使用RAID1(镜像);要在容量、容错和性能上取折衷可以使用RAID5。在大多数数据库服务器中,操作系统和数据库管理系统所在的磁盘驱动器是RAID1,数据库的数据文件则是存放于RAID5的磁盘驱动器上。
有时我们看某些名牌服务器的配置单,发现其CPU并不是很快,内存也算不上是很大,显卡更不是最好,但价格绝对不菲来源:https://www.hexox.com.cn/cshi/202502-202.html。是不是服务器系统都是暴利产品呢?当然不是。服务器的配置与一般的家用PC的着重点不在一处。除去更高的稳定性外,冗余与容错是一大特点,如双电源、带电池备份的磁盘高速缓冲器、热插拔硬盘、热插拔PCI插槽等。另一个特点就是巨大的磁盘吞吐量。这主要归功于RAID。举一个例子来说,一台使用了SCSI RAID的奔腾166与一台IDE硬盘的PⅢCopermine 800都用做文件服务器,奔腾166会比PⅢ的事务处理能力高上几十倍甚至上百倍,因为PⅢ处理器的运算能力根本用不上,反倒是奔腾166的RAID起了作用。
RAID现在主要应用在服务器,但就像任何高端技术一样,RAID也在向PC机上转移。也许所有的PC机都用上了SCSI磁盘驱动器的RAID的那一天,才是PC机真正的“出头之日”。
关于“分布式存储是什么?”这个话题的介绍,今天小编就给大家分享完了,如果对你有所帮助请保持对本站的关注!