网上科普有关“课外数学小知识三年级下册”话题很是火热,小编也是针对课外数学小知识三年级下册寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。

1.苏教三年级下册数学课外知识

小学数学课外知识1. 1到100所有自然数中与100互质的各数之和是多少?2. 歌德巴赫猜想是说:“任何不小于4的偶数都可以表示为两个质数之和”。

问:168是哪两个两位数的质数之和,并且其中一个的个位数字是1。3. 把21,26,65,99,10,35,18,77分成若干组,要求每组中任意两个数都互质,至少要分成几组?如何分?4.三个质数的乘积恰好等于它们的和的7倍,求这三个质数。

5. 两个自然数的和是72,它们的最大公约数与最小公倍数的和是216,这两个数分别是几?6. 某个七位数1993□□□能够同时被2、3、4、5、6、7、8、9整除,那么它的最后三位数依次是多少?7. 连续8个自然数的和既是9的倍数,也是11的倍数,那么这8个自然数中最大的一个数的最小值是多少?8.写出10个连续的自然数,它们个个都是合数。9.1!+2!+3!+…99! 的后两位数字是多少?(注:n!= 1*2*3*…*n )10. 少年宫游乐厅内悬挂着200个彩色灯泡,这些灯泡或明或暗,十分有趣。

这200个灯泡按1~200编号,它们的亮暗规则是: 第一秒,全部灯泡变亮; 第二秒,凡编号为2的倍数的灯泡由亮变暗; 第三秒,凡编号为3的倍数的灯泡改变原来的亮暗状态,即亮的变暗,暗的变亮; 一般地,第n秒凡编号为n的倍数的灯泡改变原来的亮暗状态。这样继续下去,每4分钟一个周期。

问:第200秒时,明亮的灯泡有多少个?。

2.三年级下册数学知识点

不知道你的教材是哪个版本的 三年级下册知识点整理 分数部分: 1、分数的意义:把单位“1”平均分成若干份,表示其中一份或几份的数叫做分数。

表示其中一份的数,叫作分数单位。 如:23 表示把一个整体平均分成3份,取其中的2份。

分子(表示取其中的几份) 分数线(表示平均分) 分母(表示把一个整体平均分成几份) 23 的分数单位是13 ,它有2个这样的分数单位。 2、分数的基本性质:分数的分子和分母同时乘或除以同一个数(0除外),分数的大小不变。

如: 13 = 26 = 39 = 412 1620 = 810 = 45 3、分数比较大小: (1) 同分母分数相比较,分子大的分数就大。如: (2) 同分子分数相比较,分母小的分数反而大。

如: (3) 分子和分母都不同的分数相比较,先化成同分母再比较。 如: 4、分数加、减法: (1) 同分母分数相加、减,分母不变,分子相加减。

如:25 + 35 = 55 = 1 89 - 19 =79 (2) 异分母分数相加、减,先化成同分母分数,再相加、减。 如: 小数部分: 1、小数的概念: 像5.83,12.5,16.72,0.8这样的数叫做小数。

2、小数各部分的名称: 读作:五十六点八三 3、小数比较大小: 小数比较大小,先比较整数部分,整数部分大的就大;如果整数部分相同,就比较小数部分的第一位,如果小数部分第一位相同,就比较小数部分第二位…… 如: 4、小数的加减法: 用竖式进行两个小数相加、减,要对齐小数点。 如: 方向与位置 1、在实际生活中,我们判断方向的方法是:早晨起来,面向太阳,前面是东,后面是西,左边是北,右边是南。

2、南与北相对,东与西相对。 3、地图一般根据上北、下南,左西、右东来绘制的。

平移与旋转 1、平移:电梯、缆车都是整体朝着一定的方向移动,这种现象称为平移。 如:升国旗;拉抽屉;电梯的移动;缆车等。

2、旋转:风车、风扇转动的时候,位置没有移动,始终绕着一个固定的点转动,这样的现象称为旋转。 如:摩天轮的转动;时针、分针、秒针在钟面上的转动;拧瓶盖等。

3、轴对称图形:两边对折完全重合的图形,称为轴对称图形。 折痕所在的直线叫做对称轴。

如:长方形、正方形、圆等。 两位数乘两、三位数 1、求几个相同加数的和用乘法比较简便。

(求几个几是多少,用乘法) 如: 8个50连加的和是多少? 50*8=400 10个90是多少? 90*10=900 2、求一个数的几倍是多少,用乘法计算。 如:14的20倍是多少? 14*20=280 长方形、正方形的面积 1、物体表面或封闭图形的大小,叫做它们的面积。

2、正方形的相关公式: 正方形的周长=边长*4; 边长=周长÷4; 正方形的面积=边长*边长。 3、长方形相关公式: 长方形的周长=(长+宽)*2;长=周长÷2-宽;宽=周长÷2-长。

长方形的面积=长*宽; 长=面积÷宽; 宽=面积÷长。 4、面积单位: (1) 每相邻两个长度单位间的进率是10。

1米=10分米;1分米=10厘米;1米=100厘米…… 千米 □ □ 米 分米 厘米 毫米 (2) 每相邻两个面积单位间的进率是100。 1平方米=100平方分米;1平方分米=100平方厘米;1平方米=10000平方厘米; 1平方千米=100公顷;1公顷=10000平方米;1平方千米=1000000平方米…… 平方千米 公顷 □ 平方米 平方分米 平方厘米 平方毫米 第一单元《位置与方向》 l 知识要点: (一)认识东、南、西、北、东北、东南、西北、西南八个方向。

1.知道辨认方向的方法:可以借助太阳等身边事物辨别方向,也可以借助指南针等工具辨别方向。 2.能根据一个方向确定其它七个方向,知道哪些方向是相对的。

南←→北,西←→东;西北←→东南,东北←→西南。 3.会辨别地图上的方向:上北下南、左西右东。

(书:练习一第3、4题;) 4.了解绘制简单示意图的方法:先确定好观察点,把选好的观察点画在平面图的中心位置,再确定好各物体相对于观察点的方向。在纸上按“上北下南、左西右东”绘制,用箭头“↑”标出北方。

(书:练习二第2题。) 5.并能看懂地图。

(p4例2:知道建筑或地点在整个地图的什么方向,地图上两个地点之间的位置关系:谁在谁的什么方向等)(大本p1双基训练)。 (二)看简单的路线图描述行走路线。

1.看简单路线图的方法:先要确定好自己所处的位置,以自己所处的位置为中心,再根据上北下南,左西右东的规律来确定目的地和周围事物所处的方向,最后根据目的地的方向和路程确定所要行走的路线。 2.描述行走路线的方法:以出发点为基准,再看哪一条路通向目的地,最后把行走路线描述出来(先向哪走,再向哪走)。

有时还要说明路程有多远。(书:p5做一做;p9做一做;)(大本:p3 左边第1、2题;右边第1、2、3题;) 3.综合性题目:给出路线图,说出去某地的走法,并根据信息求出所用时间、应该按什么速度行驶、或几时能到达、付多少钱买车票等等。

(大本:p5 第1、3题。) 第二单元《除数是一位数的除法》 l 知识要点: (一)口算除法 1.整千、整百、整十数除以一位数的口算方法(P14 例1) (1)用表内除法计算:用被除数0前面数除以一位数,算出结果后,看被除数的末尾有几个0,就在算出的结果后添几个0。

(2)先乘法,算除法:看一位数乘多少等于被除数。

3.三年级的数学小知识(越多越好)

分析、归纳试商的方法 (一)除数靠近整百数的除法此类题我们要把除数看着整百数来除。

例如,1902÷197= 1456÷202= 想:197≈200想:202≈200 200*9=1800 200*7=1400 确定试商9 确定试商7 做: 做: 因为:129 所以:试商正确 所以:试商正确(二) 除数靠近□50除法做此类题首先要加强学生对150、250、350……的倍数的口算训练,这是试商快而准的必要条件。其次在计算时要灵活的加以运用。

例如,765÷247=567÷152= 想:247≈250想:152≈150250*3=750150*3=450 确定试商3 确定试商3 做: 做: 因为:24 所以:试商正确 所以:试商正确(三) 除数在□50与整百之间由于除数是□16到□64的数有自身特点,如果我们仍然采取以上的方法,所的得的商有时会不够准确。我们可以取除数的最大值和最小值(整百),然后分别求出商,再求两商之和的平均值。

这个平均值便是我们要求的商或非常接近所求的商。 例如,781÷1361316÷261 想: 因为:781÷100商7 因为:1316÷200商6 781÷200商3 1316÷300商4(7+3)÷2=5 (6+4)÷2=5 所以:试商5 所以:试商5注:此种方法也应用与以上(二)的情况。

(四)在试商时如何减少试商的次数,是巧商的目的所在。 由于我们是采用求近似数方法,所以试商可能或大或小。

这时教师要向学生讲解商为何会发生变化,并对变化加以分析、归纳。 (1)除数四舍五入 变小了 商可能 变大了(2)除数四舍五入 变大了 商可能 变小大了以上分析目的让学生在做多位数除法时,能很快的把它进行归类,并找到与之相应方法。

从而达到巧商,提高正确率和速度。当然要使学生能够商得又准又快,达到巧商的效果。

除了掌握正确的方法之外,还要多练。俗话说“熟能生巧”,所以适当的练习是提高计算正确率和计算速度的必要条件。

数学趣题 1.有48个学生参加三项体育比赛,但参加的每项活动的人数不一样,而人数都有一个数字“6”,参加三项体育比赛的各有几人?2.龙龙和亮亮去公园玩,想买门票,但钱都不够,龙龙缺4元8角,亮亮缺1分,两人钱合起来仍不够,公园门票多少钱?3.三个人同时吃3个西红柿,用3分钟吃完,六个人同时吃6个西红柿要几分钟?4.有10张卡片,正面朝上,每次翻动6张卡片,经过若干次翻动,卡片能否都反面朝上?5.小张买了24瓶汽水,每4个空瓶可以换1瓶汽水,小张共能喝到几瓶汽水?年龄问题 1.四个人年龄之和是77岁,年龄最小的10岁,年龄最大与最小的人年龄之和比另外两个人的年龄之和大7岁,问年龄最大的人多少岁?2.爸爸在过50岁生日时,弟弟说:“等我长到哥哥现在的年龄时,我和哥哥的年龄之和等于那时爸爸的年龄”,那么哥哥今年多少岁?3.甲、乙、丙平均年龄42岁,如果甲的年龄增加7岁,乙的年龄增加一倍,丙的年龄缩小一半,则三人岁数相等,问甲多少岁?4.在一个家庭里,现在所有成员的年龄加在一起是73岁.家庭成员中有父亲、母亲、一个女儿和一个儿子.父亲比母亲大3岁,女儿比儿子大2岁.四年前家庭里所有的人的年龄总和是58岁.现在家里的每个成员各是多少岁?5.10年前吴昊的年龄是他儿子年龄的7倍.15年后,吴昊的年龄是他儿子的2倍.现在父子俩人的年龄各是多少岁?填横式 1.将0~6这7个数填在下面的○中,每个数字恰好出现一次和两位数的整数算式。○*○=○÷○=○2.由1~9的9个数字组成下列算式,5的位置已经知道,将填入其它数字 □*□=5□□□÷□*□=□3.将1~9填入下式使等式成立(有的数字已给出)。

□7*□=6□=□3-□□4.将1~9这九个数字分别填入下面算式的空格内,其中有一个数字已经知道,每个空格内只许填一个数字,使算式成立: □□□÷□□=□-□=□-75.1~9这九个数字分别填入下面算式的空格中,每个空格只许填一个数字,使算式成立:鸡兔同笼问题 1.小丽的储蓄罐中有100枚硬币。她把其中的贰分币全换成等值的伍分币,硬币总数变成73枚;然后她又把壹分币换成等值的伍分币,硬币总数变为33枚。

那么她的储蓄罐 *** 有 元。2.三种昆虫共18只,共有20对翅膀116条腿。

其中每只蜘蛛无翅8条腿,每只蜻蜓是2对翅膀6条腿,蝉是一对翅膀6条腿。问这三种昆虫各多少只?3.一张数学试卷,只有25道选择题。

做对一题得4分,做错一题倒扣1分;如不做,不得分也不扣分。若小明得了78分,那么他做对 题,做错 题,不做 题。

4.某杂志每期定价2元5角,全年共出12期。某班一些学生订半年,其余学生订全年,共需1320元;如果订半年的改订全年,订全年的改订半年,那么共需订费1245元。

问这个班共有多少名学生?5.已知甲、乙、丙3位同学共解出100道数学题,且他们3人每人都解出其中的60道题。若将其中只有1人解出的题叫做“难题”,3人都解出的题叫做“容易题”,则“难题”比“容易题”多多少道?3年级练习 1.计算:9998+998+99+9+62.计算 174+177+183+182+176+180+179+1893.某校有70名男同学及若干女同学参加数学竞赛,平均分为63分,参赛男同学平均分为60分,女同学平均分为70分,那么该校有多少女同学参赛?4.7个数的平均数是28,把这7个数排成一列,则前四个数的平均数为26,后四个数的平均数为33,则第四个数是多少?5.1,2,6,2。

4.三年级下册数学的知识点

三年级数学(下册)知识要求归纳 第一单元 位置与方向1、(东与西)相对,(南与北)相对,(东南与西北)相对,(西南与东北)相对。

面南左为东,面北左为西,面东左为北,面西左为南。2、地图通常是按(上北、下南、左西、右东)来绘制的。

通常所说的八个方向:东、西、南、北、东南、西北、西南、东北。3、会看简单的路线图,会描述行走路线。

(做题时先标出东 南 西 北。) 一定写清楚从哪儿向哪个方向走,走了多少米,到哪儿再向哪个方向走就到了哪里。

(在转弯处要注意方向的变化) 判断一个地方在什么方向,先要找到一个为中心点(观测点) 处画“米”字符号,再进行判断。 4、指南针是用来指示方向的,它的一个指针永远指向(南方),另一端永远指向(北方)。

5、生活中的方位知识:①北斗星永远在北方。 ②影子与太阳的方向相对。

③早上太阳在东方,中午在南方,傍晚在西方。 ④风向与物体倾斜的方向相反。

(刮风时的树朝风向相对的方向弯,烟朝风向相对的方向飘……) 我国地处北半球,树叶茂盛的一面是南方,树叶稀疏的一面是北方。第二单元 除数是一位数的除法1、只要是平均分就用(除 法)计算。

2、除数是一位数的竖式除法法则:(1)从被除数的高位除起,每次用除数先试被除数的前一位数,如果它比除数小,再试除前两位数。(2)除到被除数的哪一位,就把商写在那一位上。

(3)每求出一位商,余下的数必须比除数小。顺口溜:除数是一位,先看前一位,一位不够看两位,除到哪位商那位,每次除后要比较,余数要比除数小。

3、被除数末尾有几个0,商的末尾不一定就有几个0。(如:30÷5 = 6)4、笔算除法:(1)余数一定要比除数小。

在有余数的除法中:最小的余数是1;最大的余数是除数减去1;最小的除数是余数加1;最大的被除数=商*除数+最大的余数; 最小的被除数=商*除数+1;(2)除法验算:→ 用乘法 没有余数的除法 有余数的除法 被除数÷除数=商 被除数÷除数=商……余数 商*除数=被除数 商*除数+余数=被除数 被除数÷商=除数 (被除数-余数)÷商=除数0除以任何不是0的数(0不能为除数)都等于0;0乘以任何数都得0;0加任何数都得任何数本身,任何数减0都得任何数本身。5、笔算除法顺序:确定商的位数,试商,检查,验算。

6、笔算除法时,哪一位上不够商1,就添0占位。(最高位不够除,就向后退一位再商。)

7、多位数除以一位数(判断商是几位数):用被除数最高位上的数跟除数进行比较,当被除数最高位上的数大于或等于除数时,被除数是几位数商就是几位数;当被除数最高位上的数小于除数时,商的位数就是被除数的位数减去1。第三单元 复式统计表 复式统计图的特点:有利于数据的比较,更容易分辨相同项目的区别。

第四单元 两位数乘两位数1、两位数乘两位数,积可能是(三)位数,也可能是(四)位数。2、口算乘法:整十、整百的数相乘,只需把前面数字相乘,再看两个因数一共有几个0,就在结果后面添上几个0。

3、估算:18*22,可以先把因数看成整十、整百的数,再去计算。→(可以把一个因数看成近似数,也可以把两个因数都同时看成近似数。)

4、有大约字样的一般要估算。5、凡是问够不够,能不能等的题目,都要三大步:①计算、②比较、③答题。

→ 别忘了比较这一步。6、笔算乘法:先把第一个因数同第二个因数个位上的数相乘,再与第二个因数十位上的数相乘。

7、相关公式: 因数*因数=积 积÷因数=另一个因数 运算顺序:先乘除,再算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先算括号内的运算。第五单元 面 积1、物体的表面或封闭图形的大小,就是它们的面积。

封闭图形一周的长度叫周长。长度单位和面积单位的单位不同,无法比较。

2、比较两个图形面积的大小,要用统一的面积单位来测量。3、①边长1厘米的正方形,面积是1平方厘米;②边长1分米的正方形,面积是1平方分米;③边长1米的正方形,面积是1平方米;4、长方形:长方形的面积=长*宽 长方形的周长=(长+宽)*2 求长:长=长方形面积÷宽 已知周长求长:长=长方形周长÷2-宽 求宽:宽=长方形面积÷长 已知周长求宽:宽=长方形周长÷2-长 正方形:正方形的面积=边长*边长 正方形的周长=边长*4 边长:边长=正方形面积÷边长 已知周长求边长:边长=正方形周长÷45、长度单位之间的进率:1厘米=10毫米 1分米=10厘米 1米=10分米 1千米=1000米6、周长相等的两个长方形,面积不一定相等。

面积相等的两个长方形,周长也不一定相等。7、在生活中找出接近于1平方厘米、1平方分米、1平方米的例子。

例如1平方厘米(指甲盖)、1平方分米(电脑A盘或电线插座)、1平方米(教室侧面的小展板)。8、区分长度单位和面积单位的不同:长度单位测量线段的长短,面积单位测量面的大小。

(二)长方形、正方形的面积计算1、归类:什么样的问题是求周长?(缝花边、围栅栏、围栏杆、池塘或花坛周围小路长度、围操场跑步的长度等等) 什么样的问题是求面积?或与面积有关?(课本等封面大小、刷墙、花坛周围小路面积、给餐桌配玻璃、给课桌配桌布、洒水车洒到的地面。

5.小学三年级数学下册知识点梳理

一、植树问题:这类应用题是以“植树”为内容。

凡是研究总路程、株距、段数、棵树四种数量关系的应用题,叫做植树问题。 解题关键:解答植树问题首先要判断地形,分清是否封闭图形,从而确定是沿线段植树还是沿周长植树,然后按基本公式进行计算。

解题规律:沿线段植树 棵树=总路程÷株距+1 棵树=段数+1 株距=总路程÷(棵树-1) 总路程=株距*(棵树-1) 沿周长植树 棵树=总路程÷株距 棵树=段数 株距=总路程÷棵树 总路程=株距*棵树 例 沿公路一旁埋电线杆 301 根,每相邻的两根的间距是 50 米 。后来全部改装,只埋了201 根。

求改装后每相邻两根的间距。 分析:本题是沿线段埋电线杆,要把电线杆的根数减掉一。

列式为 50 *( 301-1 )÷( 201-1 ) =75 (米) 二、分数和百分数的应用1 分数加减法应用题: 分数加减法的应用题与整数加减法的应用题的结构、数量关系和解题方法基本相同,所不同的只是在已知数或未知数中含有分数。2分数乘法应用题: 是指已知一个数,求它的几分之几是多少的应用题。

特征:已知单位“1”的量和分率,求与分率所对应的实际数量。 解题关键:准确判断单位“1”的量。

找准要求问题所对应的分率,然后根据一个数乘分数的意义正确列式。 3 分数除法应用题: 求一个数是另一个数的几分之几(或百分之几)是多少。

特征:已知一个数和另一个数,求一个数是另一个数的几分之几或百分之几。“一个数”是比较量,“另一个数”是标准量。

求分率或百分率,也就是求他们的倍数关系。 解题关键:从问题入手,搞清把谁看作标准的数也就是把谁看作了“单位一”,谁和单位一的量作比较,谁就作被除数。

甲是乙的几分之几(百分之几):甲是比较量,乙是标准量,用甲除以乙。 甲比乙多(或少)几分之几(百分之几):甲减乙比乙多(或少几分之几)或(百分之几)。

关系式(甲数减乙数)/乙数或(甲数减乙数)/甲数 。 已知一个数的几分之几(或百分之几 ) ,求这个数。

特征:已知一个实际数量和它相对应的分率,求单位“1”的量。 解题关键:准确判断单位“1”的量把单位“1”的量看成x根据分数乘法的意义列方程,或者根据分数除法的意义列算式,但必须找准和分率相对应的已知实际 数量。

三、度量 一、长度 (一) 什么是长度 长度是一维空间的度量。 (二) 长度常用单位 公里(km) 、米(m) 、分米(dm)、厘米(cm)、毫米(mm) 、微米(um) (三) 单位之间的换算 1毫米 =1000微米 , 1厘米 =10 毫米 , 1分米 =10 厘米 , 1米 =1000 毫米 , 1千米 =1000 米 二、面积 (一)什么是面积 面积,就是物体所占平面的大小。

对立体物体的表面的多少的测量一般称表面积。 (二)常用的面积单位 平方毫米 、平方厘米 、平方分米、平方米 、平方千米 (三)面积单位的换算 1平方厘米 =100 平方毫米 , 1平方分米=100平方厘米 ,1平方米 =100 平方分米 1公倾 =10000 平方米 , 1平方公里 =100 公顷 三、体积和容积 (一)什么是体积、容积 体积,就是物体所占空间的大小。

容积,箱子、油桶、仓库等所能容纳物体的体积,通常叫做它们的容积。 (二)常用单位 1、体积单位 立方米 、立方分米、立方厘米 2 、容积单位: 升、毫升 (三)单位换算 (1) 体积单位 1立方米=1000立方分米 1立方分米=1000立方厘米 (2) 容积单位 1升=1000毫升1升=1立方米 1毫升=1立方厘米 四、质量 (一)什么是质量 质量,就是表示表示物体有多重。

(二)常用单位 吨 :t 千克: kg 克: g (三)常用换算 一吨=1000千克 1千克=1000克 五、时间 (一)什么是时间 是指有起点和终点的一段时间 (二)常用单位 世纪、年 、月 、日 、时 、分、秒 (三)单位换算 1世纪=100年 1年=365天 (平年) 1年=366天 (闰年) 一、三、五、七、八、十、十二是大月, 大月有31 天 四、六、九、十一是小月,小月有30天 平年2月有28天, 闰年2月有29天 1天= 24小时 1小时=60分 1分=60秒 六、货币 (一)什么是货币 货币是充当一切商品的等价物的特殊商品。货币是价值的一般代表,可以购买任何别的商品。

(二)常用单位 元 、角 、分 (三)单位换算 1元=10角 1角=10分。

6.有关三年级的数学小知识

小学三年级下册数学知识要点

一、位置与方向

东、南、西、北、东北、西北、东南和西南八个方向:

二、年月日:

(1)公历年份是4的倍数的一般都是闰年,但公历年份是整百数的,必须是400的倍数才是闰年。比如:1900年是平年不是闰年,2000年是闰年不是平年。

(2)闰年的二月是29天,平年的二月是28天。其他月份中,大月份是31天,小月份是30天。

(3)1年有12个月,平年一年365天,闰年一年366天。

(4)同一时刻24小时制和12小时制相差12。

三、面积和周长

(1)面积:物体的表面或封闭图形的大小;

(2)周长:封闭图形一周的长度

(3)长方形的周长=(长+宽)*2, 正方形的周长=边长*4

(4)长方形的面积=长*宽, 正方形的面积=边长*边长

四、平均数和小数

(1)平均数=所有数据的和÷数据的个数

(2)象0.2,1.8之样的数叫小数

五、常见的单位及其进率

1、人民币单位(元、角、分):

① 1元=10角;1角=10分;1元=100分;

② 1分=0.1角;1角=0.1元;

2、长度单位(千米、米、分米、厘米、毫米):

① 1千米=1000米;1米=10分米;1分米=10厘米;1厘米=10毫米;

② 1米=100厘米=1000毫米;

③ 1毫米=0.1厘米;1厘米=0.1分米;1分米=0.1米;

3、面积单位(平方千米、公顷、平方米、平方分米、平方厘米、平方毫米):

① 1平方米=100平方分米;1平方分米=100平方厘米;

② 1平方千米=100公顷;1公顷=10000平方米;

7.课外数学小知识

一、哥德巴赫猜想 1742年德国人哥德巴赫给当时住在俄国彼得堡的大数学家欧拉写了一封信,在信中提出两个问题:第一,是否每个大于4的偶数都能表示为两个奇质数之和?如6=3+3,14=3+11等。第二,是否每个大于7的奇数都能表示3个奇质数之和?如9=3+3+3,15=3+5+7等。这就是著名的哥德巴赫猜想。它是数论中的一个著名问题,常被称为数学皇冠上的明珠。

二、在很久以前印度有个叫塞萨的人,精心设计了一种游戏献给国王,就是现在的64格国际象棋。国王对这种游戏非常满意,决定赏赐塞萨。国王问塞萨需要什么,塞萨指着象棋盘上的小格子说:“就按照棋盘上的格子数,在第一个小格内赏我1粒麦子,在第二个小格内赏我2粒麦子,第三个小格内赏4粒,照此下去,每一个小格内的麦子都比前一个小格内的麦子加一倍。陛下,把这样摆满棋盘所有64格的麦粒,都赏给我吧。”国王听后不加思索就满口答应了塞萨的要求。但是经过大臣们计算发现,就是把全国一年收获的小麦都给塞萨,也远远不够。赛萨的话没有错,他的要求的确是满足不了的。根据计算,棋盘上六十四个格子小麦的总数将是一个十九位数,折算为重量,大约是两千多亿吨。国王拥有至高无尚的权力,却用其无知诠释着知识的深奥。

三、古希腊的智者是怎样测量金字塔的高度的 先在地上立一竹竿,在有太阳的同一时刻分别测量竹竿的影子和金字塔的影子的长度,然后计算出竹竿长度与竹竿影子长度的比例,这个比例就是金字塔高度与金字塔影子的长度的比例。用这个比例和金字塔影长就可以计算出金字塔的高度。

学生三年级的数学问题,求答案及算数方式

八戒吃了几个山桃

八戒去花果山找悟空,大圣不在家。小猴子们热情地招待八戒,采了山中最好吃的山桃整整100个,八戒高兴地说:“大家一起吃!”可怎样吃呢,数了数共30只猴子,八戒找个树枝在地上左画右画,列起了算式,100÷30=3.....1

八戒指着上面的3,大方的说,“你们一个人吃3个山桃吧,瞧,我就吃那剩下的1个吧!”小猴子们很感激八戒,纷纷道谢,然后每人拿了各自的一份。

悟空回来后,小猴子们对悟空讲今天八戒如何大方,如何自已只吃一个山桃,悟空看了八戒的列式,大叫,“好个呆子,多吃了山桃竟然还嘴硬,我去找他!”

哈哈,你知道八戒吃了几个山桃?

阿拉伯数字的由来

小明是个喜欢提问的孩子。一天,他对0—9这几个数字产生兴趣:为什么它们被称为“阿拉伯数字”呢?于是,他就去问妈妈:“0—9既然叫‘阿拉伯数字’,那肯定是阿拉伯人发明的了,对吗妈妈?”

妈妈摇摇头说:“阿拉伯数字实际上是印度人发明的。大约在1500年前,印度人就用一种特殊的字来表示数目,这些字有10个,只要一笔两笔就能写成。后来,这些数字传入阿拉伯,阿拉伯人觉得这些数字简单、实用,就在自己的国家广泛使用,并又传到了欧洲。就这样,慢慢变成了我们今天使用的数字。因为阿拉伯人在传播这些数字发挥了很大的作用,人们就习惯了称这种数字为‘阿拉伯数字’。”

小明听了说:“原来是这样。妈妈,这可不可以叫做‘将错就错’呢?”妈妈笑了。

儿歌比赛

动物学校举办儿歌比赛,大象老师做裁判。

小猴第一个举手,开始朗诵:“进位加法我会算,数位对齐才能加。个位对齐个位加,满十要向十位进。十位相加再加一,得数算得快又准。”

小猴刚说完,小狗又开始朗诵:“退位减法并不难,数位对齐才能减。个位数小不够减,要向十位借个一。十位退一是一十,退了以后少个一。十位数字怎么减,十位退一再去减。”

大家都为它们的精彩表演鼓掌。大象老师说:“它们的儿歌让我们明白了进位加法和退位减法,它们两个都应该得冠军,好不好?”大家同意并鼓掌祝贺它们。

﹤、﹥和﹦的本领

很久以前,数学王国比较混乱。0—9十个兄弟不仅在王国称霸,而且彼此吹嘘自己的本领最大。数学天使看到这种情况很生气,派﹤、﹥和﹦三个小天使到数学王国建立次序,避免混乱。

三个小天使来到数学王国,0—9十个兄弟轻蔑地看着它们。9问道:“你们三个来数学王国干什么,我们不欢迎你们!”

﹦笑着说:“我们是天使派来你们王国的法官,帮你们治理好你们国家。我是‘等号’,这两位是‘大于号’和‘小于号’,它们开口朝谁,谁就大;它们尖尖朝谁,谁就小。”

0—9十个兄弟听说它们是天使派来的法官,就乖乖地服从﹤、﹥和﹦的命令。从此,数学王国有了严格的次序,任何人不会违反。

小熊开店

小熊不喜欢学习,只想做生意,于是在学校旁边开了个水果店。小兔和小猴是它的同学,它们商量好,要教训这个不爱上学的懒家伙。

它们来到小熊的水果店。

“桃子怎么卖呀?”小猴问。

“第一筐里6元3公斤,第二筐里6元2公斤。”小熊回答。

小猴又说:“如果我从两筐里拿5公斤,要付你12元,对吗?”

小熊点点头。

“那我全买下,既然5公斤12元,那60公斤就是12×12=144元,对不对?”

“正是,正是。”小熊讲。

于是小猴买了所有的桃子,付了钱,和小兔高兴地走了。

晚上回到家,小熊结帐,怎么算都是亏本的。第二天,小猴、小兔找到小熊把情况说了,笑着说:“都是你学习不好,我们才来教训你一下”,并把少给的钱补给了小熊。

小熊惭愧地低下了头,从此每天上课都很认真。它们三个成了好朋友。

唐僧师徒摘桃子

一天,唐僧命徒弟悟空、八戒、沙僧三人去花果山摘些桃子。不久,徒弟三人摘完桃子高高兴兴回来。师父唐僧问:你们每人各摘回多少个桃子?

八戒憨笑着说:师父,我来考考你。我们每人摘的一样多,我筐里的桃子不到100个,如果3个3个地数,数到最后还剩1个。你算算,我们每人摘了多少个?

沙僧神秘地说:师父,我也来考考你。我筐里的桃子,如果4个4个地数,数到最后还剩1个。你算算,我们每人摘了多少个?

悟空笑眯眯地说:师父,我也来考考你。我筐里的桃子,如果5个5个地数,数到最后还剩1个。你算算,我们每人摘多少个?

唐僧很快说出他们每人摘桃子的个数。你知道他们每人摘多少个桃子吗

数学优秀小故事

有一个年轻的小伙子来找刘先生,并自我介绍说:“我叫于江,这次我带领了一个旅游团到香港旅游,听说您的大酒店环境舒适,服务周到,我们想来住你们酒店。”

刘先生连忙热情地说:“欢迎,欢迎,不知贵团一共有多少人?”

“人嘛,还可以,是一个大团。”

刘先生心里一阵惊喜:一个大团,又是一笔大生意,真是太好了。

作为一个导游,于江看出了刘先生的心思,他慢条斯理地说:“先生,如果你能算出我团的人数,我们就住您们酒店了。”

“你请说吧。”刘先生自信地说。

“如果我把我的团平均分成四组,多出一人,再把每小组平均分成四份,结果又多出一人,再把分成的四小组分成四份,结果又多出一人,当然,也包括我,请问我们至少有多少人?”

“一共多少呢?”刘先生马上思考起来,他一定要接下这笔生意,“没有具体的数字,该如何下手呢?”他是精明的生意人,很快说出答案:“至少八十五人,对不对?”

于江先生高兴地说:“一点不错,就是八十五人。请说说您的算法。”

“人数最少的情况是最后一次四等分时,每份为一人,由此推理得到:第三次分之前有1×4+1=5(人),第二次分之前有5×4+1=21(人),第一次分之前有21×4+1=85(人)。”

“好,我们今天就住在您这儿了。”

“那你们有多少男的和女的?”

“有55个男的,30个女的。”

“我们这儿现在只有11人的房间,7人、5人的房间,你们想怎么住?”

“当然是先生您给安排了,但必须男女分开,也不能有空床位。”

又出了一个题目,刘先生还从没碰到过这样的客人,他只好又得花一番心思了。

瞑思苦想之后,他终于得出了最佳方案:男的两间11人房间,四间7人房,一间5人房;女的一间11人房间,两间7人房,一间5人的,一共11间。

于江先生看了他的安排后,非常满意,马上办了住宿手续。

一桩大生意做成了,虽然复杂了一点,但刘先生的心里还是十分高兴的。

聪明的小男孩

从前,一个国王经常给身边的大臣出难题来取乐,如果大臣答对了,他将用小恩小惠给点赏赐;如果答不出来,那将受罚,甚至被砍头。

一天,国王指着宫里的一个池塘问:“谁能说出池子里有多少桶水,我就赏他珠宝。如果说不出来,我就要‘赏’你们每人50大鞭。”大臣们被这突如其来的问题难住了。

正在大臣们心慌意乱之际,走过来一个放牛的小男孩。他问清了事情的缘由之后说:“我愿意见见这位国王。”

大臣们把小男孩带到了国王身边。国王见眼前的小男孩又黑又瘦又小,便怀疑说:“这个问题答上来有奖,答不上来可要被砍头的,你知道吗?”在场的人都替这个小男孩捏了一把汗,可小男孩却不慌不忙地回答出国王的问题。国王无奈之下,拿出珠宝奖励给了小男孩。小朋友们,你知道他是怎样回答的吗?

其实,国王出的是一道条件不足的问题。在正常的思维模式下是无法找出正确答案的。小男孩正好抓住这一关键。他是这样回答的:“这要看桶有多大:如果桶和池塘一样大,就是一桶水;如果桶只有池塘一半大,就是有两桶水;如果桶是池塘的三分之一大,就是3桶水……”

小男孩实际上打破了习惯性的思维模式,对具体的问题进行具体的分析,他的头脑多么聪明,多么灵活啊!

一个故事引发的数学家

陈景润是家喻户晓的数学家,在攻克歌德巴赫猜想方面作出了重大贡献,创立了著名的“陈氏定理”,所以有许多人亲切地称他为“数学王子”。但有谁会想到,他的成就源于一个故事。

1937年,勤奋的陈景润考上了福州英华书院。一天,沈元老师在数学课上给大家讲了一个故事:“200年前有个法国人发现了一个有趣的现象:6=3+3,8=5+3,10=5+5,12=5+7,28=5+23,100=11+89。每个大于4的偶数都可以表示为两个奇数之和。因为这个结论没有得到证明,所以还是一个猜想。大数学欧拉说过:虽然我不能证明它,但是我确信这个结论是正确的。

从此,陈景润对这个奇妙问题产生了浓厚的兴趣。课余时间他最爱到图书馆,不仅读了中学辅导书,这些大学的数理化课程教材他也如饥似渴地阅读。

兴趣是第一老师。正是这样的数学故事,引发了陈景润的兴趣,引发了他的勤奋,从而引发了一位伟大的数学家。(果果)

三年级下册应用题,题目字数少点

您好!直入主题吧。

解题思路:

前后两种分法有一个共同点:总人数相同,班级数相同

设想总人数多加6人(为什么是6呢,注意到后面的条件),那么第一种分法就变成了还剩(18+6)人,第二种分法正好每班53人,所以在第一种分法后,接着分这剩下的24人,就可以晋级为第二种分法。于是,答案就出来了。

解题过程:

18+6=24

53-45=8

24除以8等于3

3x53-6=153

答:一年级招收新生153人,一年级共有3个班

解题心得:

就拿这道题来说吧,三年级数学题,算是比较难的题了,建议家长或者教师(未来的同行)能够以数形结合(画图)的方式讲给孩子听,这种题锻炼孩子智力是相当不错的。

希望能帮助到你。

应用题的题目:

1、王霞买来一本140页的故事书,已经看了86页。剩下的计划6天看完,每天要看多少页。

2、一把椅子的价钱是25元,一张桌子的价钱是一把椅子的3倍。买一把椅子和一张桌子共用多少元。

3、班里图书角有58本故事书、34本科普读物。要放在一个4层的书架上,平均每层要放多少本书。

4、李丽和王敏同时做纸鹤,李丽每小时做12只,王敏每小时做14只,做了3小时,两个人一共做了多少只纸鹤。

5、同学们参加爬山比赛,女同学分成了4组,每组有15人。参赛的男同学有76名,一共有多少名同学参加爬山比赛。

简介

数学教学中,把含有某些数学关系(例如:数量关系、几何图形的位置关系等)的实际问题用语言或文字叙述出来,这样所形成的题目叫做应用题。任何一道应用题都由两部分构成。第一部分是已知条件(简称条件),第二部分是所求问题(简称问题)。应用题的条件和问题,组成了应用题的结构。

关于“课外数学小知识三年级下册”这个话题的介绍,今天小编就给大家分享完了,如果对你有所帮助请保持对本站的关注!


来源:https://longhuajy.com/lhkp/202501-2406.html 来源:https://www.aczc88.com/tt/202501-2734.html 来源:https://longhuajy.com/lhzs/202501-2745.html 来源:https://longhuajy.com/lhkx/202501-2156.html 来源:https://www.aczc88.com/bkdq/202501-2684.html 来源:https://www.aczc88.com/sh/202501-2150.html 来源:https://www.aczc88.com/bkdq/202501-2138.html 来源:https://longhuajy.com/lhkp/202501-2676.html 来源:https://www.aczc88.com/tt/202501-2569.html 来源:https://www.aczc88.com/zsbk/202501-1836.html