网上有关“分子遗传学的发展简史”话题很是火热,小编也是针对分子遗传学的发展简史寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。

1944年,美国学者埃弗里等首先在肺炎双球菌中证实了转化因子是脱氧核糖核酸(DNA),从而阐明了遗传的物质基础。1953年,美国分子遗传学家沃森和英国分子生物学家克里克提出了DNA分子结构的双螺旋模型,这一发现常被认为是分子遗传学的真正开端。

1955年,美国分子生物学家本泽用基因重组分析方法,研究大肠杆菌的T4噬菌体中的基因精细结构,其剖析重组的精细程度达到DNA多核苷酸链上相隔仅三个核苷酸的水平来源:https://www.faithandyoung.com/cshi/202412-493.html">">。这一工作在概念上沟通了分子遗传学和经典遗传学。

关于基因突变方面,早在1927年马勒和1928年斯塔德勒就用 X射线等诱发了果蝇和玉米的基因突变,但是在此后一段时间中对基因突变机制的研究进展很慢,直到以微生物为材料广泛开展突变机制研究和提出DNA分子双螺旋模型以后才取得显著成果。例如碱基置换理论便是在T4噬菌体的诱变研究中提出的,它的根据便是DNA复制中的碱基配对原理。

美国遗传学家比德尔和美国生物化学家塔特姆根据对粗糙脉孢菌的营养缺陷型的研究,在40年代初提出了一个基因一种酶假设,它沟通了遗传学中对基因的功能的研究和生物化学中对蛋白质生物合成的研究。

按照一个基因一种酶假设,蛋白质生物合成的中心问题是蛋白质分子中氨基酸排列顺序的信息究竟以什么形式储存在DNA分子结构中,这些信息又通过什么过程从DNA向蛋白质分子转移。前一问题是遗传密码问题,后—问题是蛋白质生物合成问题,这又涉及转录和翻译、信使核糖核酸(mRNA)、转移核糖核酸(tRNA)和核糖体的结构与功能的研究。这些分子遗传学的基本概念都是在20世纪50年代后期和60年代前期形成的。

分子遗传学的另一重要概念——基因调控在1960~1961年由法国遗传学家莫诺和雅各布提出。他们根据在大肠杆菌和噬菌体中的研究结果提出乳糖操纵子模型。接着在1964年,又由美国微生物和分子遗传学家亚诺夫斯基和英国分子遗传学家布伦纳等,分别证实了基因的核苷酸顺序和它所编码的蛋白质分子的氨基酸顺序之间存在着排列上的线性对应关系,从而充分证实了一个基因一种酶假设。此后真核生物的分子遗传学研究逐渐开展起来。

用遗传学方法可以得到一系列使某一种生命活动不能完成的突变型,例如不能合成某一种氨基酸的突变型、不能进行DNA复制的突变型、不能进行细胞分裂的突变型、不能完成某些发育过程的突变型、不能表现某种趋化行为的突变型等。不过许多这类突变型常是致死的,所以各种条件致死突变型,特别是温度敏感突变型常是分子遗传学研究的重要材料。

在得到一系列突变型以后,就可以对它们进行遗传学分析,了解这些突变型代表几个基因,各个基因在染色体上的位置,这就需要应用互补测验,包括基因精细结构分析等手段。来源:https://www.faithandyoung.com/xwzx/202412-13669.html">">

抽提、分离、纯化和测定等都是分子遗传学中的常用方法。在对生物大分子和细胞的超微结构的研究中还经常应用电子显微镜技术。对于分子遗传学研究特别有用的技术是顺序分析、分子杂交和重组DNA技术。

核酸和蛋白质是具有特异性结构的生物大分子,它们的生物学活性决定于它们的结构单元的排列顺序,因此常需要了解它们的这些顺序。如果没有这些顺序分析,则基因DNA和它所编码的蛋白质的线性对应关系便无从确证;没有核酸的顺序分析,则插入顺序或转座子两端的反向重复序列的结构和意义便无从认识,重叠基因也难以发现。

分子遗传学是从微生物遗传学发展起来的。虽然分子遗传学研究已逐渐转向真核生物方面,但是以原核生物为材料的分子遗传学研究还占很大的比重。此外,由于微生物便于培养,所以在分子遗传学和重组DNA技术中,微生物遗传学的研究仍将占有重要的位置。

分子遗传学方法还可以用来研究蛋白质的结构和功能。例如可以筛选得到一系列使某一蛋白质失去某一活性的突变型。应用基因精细结构分析可以测定这些突变位点在基因中的位置;另外通过顺序分析可以测定各个突变型中氨基酸的替代,从而判断蛋白质的哪一部分和特定的功能有关,以及什么氨基酸的替代影响这一功能等等。

生物进化的研究过去着眼于形态方面的演化,以后又逐渐注意到代谢功能方面的演变来源:https://www.faithandyoung.com/cshi/202501-4748.html">">。自从分子遗传学发展以来又注意到DNA的演变、蛋白质的演变、遗传密码的演变以及遗传机构包括核糖体和tRNA等的演变。通过这些方面的研究,对于生物进化过程将会有更加本质性的了解。

分子遗传学也已经渗入到以个体为对象的生理学研究领域中去,特别是对免疫机制和激素的作用机制的研究。随着克隆选择学说的提出,目前已经确认动物体的每一个产生抗体的细胞只能产生一种或者少数几种抗体,而且已经证明这些细胞具有不同的基因型。这些基因型的鉴定和来源的探讨,以及免疫反应过程中特定克隆的选择和扩增机制等既是免疫遗传学也是分子遗传学研究的课题来源:https://www.faithandyoung.com/cshi/202412-276.html">">。

将雌性激素注射雄鸡,可以促使雄鸡的肝脏细胞合成卵黄蛋白。这一事实说明雄鸡和雌鸡一样,在肝脏细胞中具有卵黄蛋白的结构基因,激素的作用只在于激活这些结构基因。

激素作用机制的研究也属于分子遗传学范畴,属于基因调控的研究。个体发生过程中一般并没有基因型的变化,所以发生问题主要是基因调控问题,也属于分子遗传学研究范畴。来源:https://www.faithandyoung.com/cshi/202412-2366.html">">

分子遗传学研究的方法,特别是重组DNA技术已经成为许多遗传学分支学科的重要研究方法来源:https://www.faithandyoung.com/cshi/202501-3423.html">">。分子遗传学也已经渗入到许多生物学分支学科中,以分子遗传学为基础的遗传工程则正在发展成为一个新兴的工业生产领域。

不同生物的进化过程不同,是DNA和什么不同

进化释义:事物逐渐发展变化,特指生物从较低级、较简单的状态向较高级、较复杂的状态演变。

进化,又称演化(evolution),在生物学中是指种群里的遗传性状在世代之间的变化。所谓性状是指基因的表现,在繁殖过程中,基因会经复制并传递到子代,基因的突变可使性状改变,进而造成个体之间的遗传变异。新性状又会因物种迁徙或是物种间的水平基因转移,而随着基因在种群中传递。当这些遗传变异受到非随机的自然选择或随机的遗传漂变影响,在种群中变得较为普遍或不再稀有时,就表示发生了进化。简略地说,进化的实质便是:种群基因频率的改变。

一、进化简介

英文中的“evolution”一词,起源于拉丁文的“evolvere”,原意是将一个卷在一起的东西打开,也指任何事物的生长、变化或发展,包括恒星的演变,化学的演变,文化的演变或者观念的演变。自从19世纪以后,演化通常用来指生物学上,不同世代之间外表特征与基因频率的改变。

达尔文并未对“evolution”下过定义,在1859年出版的《物种起源》第一版中,也并未使用“evolution”这个字,当时达尔文是使用“经过改变的继承”(descent with modification)、“改变过程”(processof modification)或是“物种改变的原理”(doctrine of the modification of species)等词。evolution这个字在当时生物学上的意义,是胚胎发育过程,在当时一般用语中具有“进步”的含义,而达尔文反对将“进步”之类的用语来描述生物改变的过程。他曾在《物种起源》第7章中说:“(天择)的最后结果,包括了生物体的进步(advance)及退步(retrogression)两种现象”来源:https://www.faithandyoung.com/xwzx/202412-12148.html">">。而后来包括达尔文在内的学者,之所以改用evolution来描述生物演化现象,乃因英国哲学家赫伯特·史宾赛在许多著作里进行的名词统一。

以自然选择为基础的进化理论,最早是由查尔斯·达尔文与亚尔佛德·罗素·华莱士所提出,详细论述则出现在达尔文出版于1859年的《物种起源》。1930年代,达尔文自然选择说与孟德尔遗传合二为一,形成了现代综合进化理论,连结了进化的“机制”(自然选择)与进化的“单位”(基因)。这种有力的解释及具预测性的理论,成为现代生物学的中心原则,使地球生物的多样性得以统一说明。来源:https://www.faithandyoung.com/cshi/202412-205.html">">

二、进化时间表

在进化过程中,有许多关键性的生物分化,配合地质时间与进化历程,能够归纳出进化时间表。

1、前寒武纪

已知的化石纪录中,最早生命遗迹是出现在约38亿年前,原核单细胞生物则出现在33亿年前。到了22亿年前,才出现最早的真核单细胞生物,如蓝绿菌。6亿年前藻类与软体无脊椎动物出现。在此之前的年代称为前寒武纪。

2、古生代

古生代是由5亿4千3百万年前到5亿1千万年前所发生的寒武纪大爆发开始。此时大多数现代动物,在分类上的“门”已经出现。之后海中藻类大量出现,而三叶虫化石。活跃于2-5亿万年前。且植物与节肢动物开始登上陆地。最早的维管束植物在4亿3千9百万到4亿9百万年前出现。接着是硬骨鱼类、两栖类与昆虫的出现。3亿6千3百万年前到2亿9千万年前,维管束植物开始发展成大型森林,同时最早的种子植物与爬虫类出现,并由两栖类支配地球。最后爬虫类开始发展,并分化出类似哺乳类的爬虫类,随后发生二叠纪灭绝事件,古生代结束。

3、中生代

中生代开始于2亿4千5百万年前,这时以恐龙为主的爬虫类与裸子植物逐渐支配地球。1亿4千4百万年前到6千5百万年前,开花植物出现,最后中生代结束于白垩纪灭绝事件。

4、新生代

6千5百万年前之后则称为新生代。哺乳类、鸟类与能够为开花植物授粉的昆虫开始发展。开花植物与哺乳动物在这段时间取代了裸子植物与爬虫类,成为支配地球的生物。可能是人类祖先的类人猿出现在360万年前,直到10万年前,现代人(Homo sapiens)才诞生。

人类基因一直在变异吗?

不同生物的进化过程不同,是DNA和自然环境不同。

进化,又称演化(evolution),在生物学中是指种群里的遗传性状在世代之间的变化。所谓性状是指基因的表现,在繁殖过程中,基因会经复制并传递到子代,基因的突变可使性状改变,进而造成个体之间的遗传变异。新性状又会因物种迁徙或是物种间的水平基因转移,而随着基因在种群中传递。当这些遗传变异受到非随机的自然选择或随机的遗传漂变影响,在种群中变得较为普遍或不再稀有时,就表示发生了进化。简略地说,进化的实质便是:种群基因频率的改变。来源:https://www.faithandyoung.com/xwzx/202412-12049.html">">

基因是DNA分子中一些含有遗传信息的区域,DNA则是含有四种碱基的长链分子。不同的基因具有不同的碱基序列,这些序列以编码形式形成遗传讯息。细胞里的DNA长链会与蛋白质聚集形成一种染色体的构造,染色体上的特定位置,称作基因座(locus)。有时基因座上的序列在不同个体之间有所差异,这些各式各样的变化型态称为等位基因(allele)。突变可使基因序列改变,产生新的等位基因。当突变发生时,新形成的等位基因可能会影响此基因所控制的性状,使表现型改变。不过单一等位基因对应单一性状的情形较少,多数的性状更为复杂,而且是由许多进行交互作用的基因来控制的。

自然界的生物,通过激烈的生存斗争,适应者生存下来,不适应者被淘汰掉,这就是自然选择。环境条件改变了,原先有利的变异可能变得不利,而原先不利的变异可能变得有利。等位基因是通过基因突变产生的,并在有性生殖过程中通过基因重组而形成多种多样的基因型,从而使种群出现大量的可遗传变异。 变异是不定向的,变异只是给生物进化提供原始材料,不能决定生物进化的方向。种群中产生的变异是不定向的,经过长期的自然选择,其中的不利变异被不断淘汰,有利变异则逐渐积累,从而使种群的基因频率发生定向的改变,导致生物朝着一定的方向缓慢地进化。来源:https://www.faithandyoung.com/cshi/202412-13017.html">">

在漫长的进化过程中,人类克服了无数困难,终于成为宇宙中已知的唯一存在的智慧生命体。然而纵观整个大自然,几乎所有存活于世的物种都经历了类似的过程,所以只能说人类无比幸运,在某种机缘巧合之下才拥有了独一无二的智慧。来源:https://www.faithandyoung.com/xwzx/202412-12572.html">">

在科技的支持下,人类逐渐认识到了复杂的基因传承,并且试图发挥无穷的想象力,对其他生物进行改造,这一点在很多科幻作品中似乎已经有所体现。

因此,在人们看来,基因改造以及基因变异从某种角度来说是一件十分恐怖的事情,一旦中间出现一些差错,很有可能带来灭顶之灾。实际上,科学家们在研究过程中发现,人类本身就存在天然的基因变异,所以这并不是一件值得令人恐惧的事情。

也就是说,世界上很多物种其实都存在基因变异,没有一成不变的基因传承,为了保障物种可以不断适应外界的环境,基因变异是一件十分必要的事。

相关数据显示,目前已经在人类基因中找到60种变异基因,并且相关基因研究还正在进行中,所以这个数字可能远不止于此。

科学家表示,每个人除了从父母那里继承了一部分基因之外,还有60多种原本不属于父母的基因加入。这种基因变异并没有超出范围,反而增加了人类的多样性,为整个人类文明的延续提供了更多的可能性。

也有观点认为,这些变异基因其实并没有导致人类出现太多变化,准确来说这种变异并不明显来源:https://www.faithandyoung.com/zhishi/202412-86.html">">。加上人类的基因变异更容量导致一些疾病的出现,所以基因变异也未必是一件好事。

至于有些科学家试图将基因进行改造,这种想法本身就存在一定的风险,因为稍有不慎还会导致更多问题出现,关系到了伦理道德以及人类社会后续的发展。

总之,基因变异不足以引起恐慌,但是在人类文明的发展过程中,相关问题还是应该不容小觑,科学家们试图对此进行更加深入的研究,争取早日解开关于人类基因的相关谜团。

来源:https://www.faithandyoung.com/cshi/202412-203.html">">

关于“分子遗传学的发展简史”这个话题的介绍,今天小编就给大家分享完了,如果对你有所帮助请保持对本站的关注!